Exotic charge density waves and superconductivity on the Kagome Lattice (2024)

thanks: wangzi@bc.eduthanks: zhousen@itp.ac.cnthanks: xxwu@itp.ac.cn

Rui-Qing FuCAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, ChinaSchool of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China  Jun Zhan Institute of Physics, Chinese Academy of Sciences, Beijing 100190, ChinaSchool of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China  Matteo DürrnagelInstitut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland Campus Süd, Würzburg 97074, GermanyInstitute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland  Hendrik HohmannInstitut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland Campus Süd, Würzburg 97074, Germany  Ronny ThomaleInstitut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland Campus Süd, Würzburg 97074, Germany  Jiangping Hu Institute of Physics, Chinese Academy of Sciences, Beijing 100190, ChinaNew Cornerstone Science Laboratory, Beijing 100190, China  Ziqiang WangDepartment of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA  Sen ZhouCAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, ChinaSchool of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaCAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China  Xianxin WuCAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

(May 15, 2024)

Abstract

Recent experiments have identified fascinating electronic orders in kagome materials, including intriguing superconductivity, charge density wave (CDW) and nematicity.In particular, some experimental evidence for AV3Sb5 (A = K,Rb,Cs) and related kagome metals hints at the formation of orbital currents in the charge density wave ordered regime, providing a mechanism for spontaneous time-reversal symmetry breaking in the absence of local moments.In this work, we comprehensively explore the competitive charge instabilities of the spinless kagome lattice with inter-site Coulomb interactions at the pure-sublattice van Hove filling.From the analysis of the charge susceptibility, we find that, at the nesting vectors, while the onsite charge order is dramatically suppressed, the bond charge orders are substantially enhanced owing to the sublattice texture on the hexagonal Fermi surface.Furthermore, we demonstrate that nearest-neighbor and next nearestneighborbonds are characterized by significant intrinsic real and imaginary bond fluctuations, respectively.The 2×\times×2 loop current order is thus favored by the next nearest-neighbor Coulomb repulsion.Interestingly, increasing interactions further leads to a nematic state with intra-cell sublattice density modulation that breaks the C6subscript𝐶6C_{6}italic_C start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT rotational symmetry.We further explore superconducting orders descending from onsite and bond charge fluctuations, and discuss our model’s implications on the experimental status quo.

I Introduction

Exploring novel quantum states has been a central theme in contemporary condensed matter physics. As one of its core representatives, electronic correlations have fostered intriguing quantum states in cuprate high-temperature superconductors[1]. In particular, for the pseudogap phase found in the cuprate phase diagram, an exotic charge order with circulating loop currents descending from the marginal Fermi-liquid regime has been proposed by Varma[2, 3]. Such loop current order, which preserves the lattice translational symmetry, is expected to yield unique experimental signatures, and its fluctuations could provide a mechanism for d𝑑ditalic_d-wave pairing[2]. Most importantly, the loop current order formation devises a mechanism for correlated electron systems to spontaneously break time reversal symmetry without magnetism, i.e., in the absence of local moments. The experimental status of loop currents in the cuprates, in particular whether they live up to energy scales relevant to high-Tc superconductivity, is still heavily debated[4, 5]. Meanwhile, in theory, the loop current order paradigm has proliferated from the cuprates to bernal-stacked bilayer graphene and twisted bilayer graphene[6, 7], where such proposed orbital loop currents could imply nontrivial topological properties.As fundamentally interesting as orbital current phases present themselves to be, it has been challenging to theoretically devise a solid microscopic foundation for such a state beyond mean field theory and biased variational methods. This not only applies to the formation of such a state per se, but also to the energy scale associated with it, as already seen by partially conflicting numerical evidence stemming from the analysis of finite size systems[8, 9, 10, 11, 12].

The recent discovery of Fermi surface instabilities in kagome materials such as AV3Sb5 (A = K,Rb,Cs)[13, 14, 15] and FeGe[16, 17, 18] has unveiled a wealth of remarkable properties, such as intriguing superconductivity (SC) and charge density waves (CDW). In AV3Sb5, the CDW order occurs at a temperature ranging from 78 to 103 K, displaying translational symmetry breaking and 2×\times×2×\times×2 reconstruction[19, 20]. Intriguingly, signatures of time-reversal symmetry breaking associated with the CDW have been detected through muon spin resonance (μ𝜇\muitalic_μSR)[21], optical polarization rotation[22], chiral transport[23],magneto-optical Kerr effect measurements[24], and laser-based scanning tunneling microscopy[25]. They imply the potential presence of loop current order in kagome metals with a signal strength and data diversity far beyond existing evidence in cuprates[26, 27, 28, 29, 30]. It should be noted, however, that the experimental status quo even for AV3Sb5 is far from settled. For instance, high resolution polar Kerr effect studies can be interpreted in favor of the absence of time reversal symmetry breaking[31].

In the kagome metal FeGe, a CDW transition is observed within the A-type antiferromagnetic state[16], where magnetic moments align ferromagnetically within each layer and antiferromagnetically between layers. The CDW shares the same wavevector as observed in AV3Sb5, and its emergence is accompanied with an enhancement in the magnetic moment and anomalous Hall effect[17]. Across these kagome material families, multiple van Hove singularities (VHSs) located near the Fermi level have been identified[32, 33], with the VHSs in FeGe arising from spin-minority bands due to large ferromagnetic splitting in each layer[17, 18]. These VHSs, which exhibit Fermi surface nesting, are believed to play a pivotal role in driving the correlated phenomena observed onsetting to the intra-layer ferromagnetic background, in particular with regard to the CDW.

The VHSs in the kagome lattice exhibit a unique sublattice texture. It implies matrix element reduction effects of scattering channels between VH points, and has hence been coined sublattice interference (SI)[34, 35]. Whenever the accumulation of electronic density of states at the VH points represents a relevant contribution to the formation of Fermi surface instabilities, it is to be expected that SI could have a crucial impact on the nature of electronic order. Despite intensive theoretical studies, the question of whether electronic interactions within the kagome lattice, intertwined with SI, can give rise to loop current states at van Hove filling remains an open issue. Studies using the functional renormalization group approach applied to the t-U-V model have not identified the presence of such orders[34, 36, 37, 38, 39]. Mean-field analyses, however, suggest that longer-range interactions, in particular to the range that couples all sites involved in a current loop, could have a crucial impact on loop current order[40]. Additionally, the topological loop current order can get promoted by bond order fluctuations[41].

In this article, we seek to perform model building that aims at providing a microscopic foundation for loop current order. Our work is guided by the core idea that SI in kagome metals could set the stage for loop current order reachable through a full scale many-body analysis beyond mean field and finite size studies. As we delve into the intrinsic charge orders of the kagome lattice, we further reduce complexity by examining a spinless fermionic model with inter-site Coulomb interactions. There are three motivations for this step. First, as we are avoiding complicated magnetic orders via a frozen spin scenario, we can thoroughly study the effect of sublattice texture on charge fluctuations. Second, given the absence of magnetic phases for most kagome metals of our interest, the amount of competing density wave orders removed through this simplification is highly limited, and hence allows to draw rather accurate implications for the spinful model. Third, the model is directly relevant to experiments, like antiferromagnet FeGe.To go beyond mean-field calculations, we employ the random phase approximation (RPA) approach, which allows us to treat both onsite and bond order on equal footing. Our analysis of charge susceptibilities reveals that while the onsite charge order will be suppressed, the bond charge order gets enhanced owing to SI from the sublattice texture associated with the p𝑝pitalic_p-type VHS. Moreover, facilitated by the unique lattice’s geometry, we observe that the nearest-neighbor (NN) and next NN (NNN) bonds exhibit pronounced intrinsic real and imaginary bond charge fluctuations, respectively. The emergence of a 2×2222\times 22 × 2 loop current order as the ground state is favored when the NNN repulsion is sufficiently strong, while dominant NN repulsion favors a 2×2222\times 22 × 2 trihexgonal charge bond order and can stabilize a nematic state characterized by charge density modulations within the unit cell. We further explore the nature of triplet superconductivity away from van Hove filling descending from such exotic charge orders within our model, where p𝑝pitalic_p- and f𝑓fitalic_f-wave pairings emerge due to bond charge fluctuations. Finally, we discuss possible experimental implications and contemplate on future quantitative theoretical studies that build upon the conceptual narrative outlined in our work.

II tight-binding model and susceptibilities of onsite and bond charge orders

Exotic charge density waves and superconductivity on the Kagome Lattice (1)

The kagome lattice consists of corner-sharing triangles with three sublattices, as shown in Fig.1(a).The kinetic energy is described by the tight-binding Hamiltonian,

0=trr,αβcα(r)cβ(r)μrαnα(r),subscript0𝑡subscriptdelimited-⟨⟩superscriptrr𝛼𝛽subscriptsuperscript𝑐𝛼rsubscript𝑐𝛽superscriptr𝜇subscriptr𝛼subscript𝑛𝛼r\displaystyle\mathcal{H}_{0}=-t\sum_{\langle{\textbf{r}}{\textbf{r}}^{\prime}%\rangle,\alpha\neq\beta}c^{\dagger}_{\alpha}({\textbf{r}})c_{\beta}({\textbf{r%}}^{\prime})-\mu\sum_{{\textbf{r}}\alpha}n_{\alpha}({\textbf{r}}),caligraphic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - italic_t ∑ start_POSTSUBSCRIPT ⟨ bold_r bold_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⟩ , italic_α ≠ italic_β end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( r ) italic_c start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ( r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_μ ∑ start_POSTSUBSCRIPT r italic_α end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( r ) ,(1)

where cα(r)subscriptsuperscript𝑐𝛼rc^{\dagger}_{\alpha}({\textbf{r}})italic_c start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( r ) and cα(r)subscript𝑐𝛼rc_{\alpha}({\textbf{r}})italic_c start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( r ) are the creation and annihilation operators of an electron at the lattice site r, α=1,2,3𝛼123\alpha=1,2,3italic_α = 1 , 2 , 3 is the sublattice index, rrdelimited-⟨⟩superscriptrr\langle{\textbf{r}}{\textbf{r}}^{\prime}\rangle⟨ bold_r bold_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⟩ denotes the NN sites, and nα(r)=cα(r)cα(r)subscript𝑛𝛼rsubscriptsuperscript𝑐𝛼rsubscript𝑐𝛼rn_{\alpha}({\textbf{r}})=c^{\dagger}_{\alpha}({\textbf{r}})c_{\alpha}({\textbf%{r}})italic_n start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( r ) = italic_c start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( r ) italic_c start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( r ) is the electron density operator.t𝑡titalic_t and μ𝜇\muitalic_μ are the NN hopping parameter and chemical potential, respectively.Defining t𝑡titalic_t as the unit of energy, we set t=1𝑡1t=1italic_t = 1 from now on.The tight-binding band structures feature two VHSs, one Dirac cone, and a flat band.In particular, the Fermi surfaces at the two van Hove (VH) fillings are characterized by distinct sublatice textures [34, 35].In this work, we focus on the upper VH case at the pristine filling, i.e. the p𝑝pitalic_p-type VHS [34, 35], and the sublattice-resolved Fermi surface is displayed in Fig.1(b).Clearly, the wavefunction at each saddle point (i.e. M point) is attributed to a single sublattice, while at the midpoint between two saddle points, the wavefunction exhibits a mixture of two sublattices.The Fermi surface nesting vectors Q1,2,3subscriptQ123{\textbf{Q}}_{1,2,3}Q start_POSTSUBSCRIPT 1 , 2 , 3 end_POSTSUBSCRIPT always connect distinct sublattice characters of states around the three saddle points, leading to substantial bond fluctuations, as will be demonstrated in the subsequent analysis.

To examine the intrinsic fluctuations, we consider the relevant charge orders on the kagome lattice.The first one is charge modulation, i.e., the onsite charge order, and it is described by the operator nα(r)subscript𝑛𝛼rn_{\alpha}({\textbf{r}})italic_n start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( r ) in real space.In momentum space, this operator reads nα(q)=1Nreiqrnα(r)=1Nkcα(k+q)cα(k)subscript𝑛𝛼q1𝑁subscriptrsuperscript𝑒𝑖qrsubscript𝑛𝛼r1𝑁subscriptksubscriptsuperscript𝑐𝛼kqsubscript𝑐𝛼kn_{\alpha}({\textbf{q}})=\frac{1}{\sqrt{N}}\sum_{{\textbf{r}}}e^{-i{\textbf{q}%}\cdot{\textbf{r}}}n_{\alpha}({\textbf{r}})=\frac{1}{\sqrt{N}}\sum_{{\textbf{k%}}}c^{\dagger}_{\alpha}({\textbf{k}}+{\textbf{q}})c_{\alpha}({\textbf{k}})italic_n start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( q ) = divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_N end_ARG end_ARG ∑ start_POSTSUBSCRIPT r end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i q ⋅ r end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( r ) = divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_N end_ARG end_ARG ∑ start_POSTSUBSCRIPT k end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( k + q ) italic_c start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( k ).We additionally consider bond charge modulation, i.e. charge bond order, on NN and NNN bonds.Due to the unique geometry of the kagome lattice, within each unit cell there are two NN (NNN) bonds along the direction parallel (perpendicular) to each basis vector 𝒂αsubscript𝒂𝛼{{\bm{a}}}_{\alpha}bold_italic_a start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT, and they all connect two distinct sublattices β𝛽\betaitalic_β and γ𝛾\gammaitalic_γ, with the Levi-civta symbol satisfying ϵαβγ=1subscriptitalic-ϵ𝛼𝛽𝛾1\epsilon_{\alpha\beta\gamma}=1italic_ϵ start_POSTSUBSCRIPT italic_α italic_β italic_γ end_POSTSUBSCRIPT = 1, i.e., (α,β,γ)=𝛼𝛽𝛾absent(\alpha,\beta,\gamma)=( italic_α , italic_β , italic_γ ) = (1, 2, 3), (2, 3, 1), and (3, 1, 2).This allows us to define the symmetric (+++) and antisymmetric (--) bond operators [30, 40]

Bα,+,η(r)subscript𝐵𝛼𝜂r\displaystyle B_{\alpha,+,\eta}({\textbf{r}})italic_B start_POSTSUBSCRIPT italic_α , + , italic_η end_POSTSUBSCRIPT ( r )=12[cβ(r)cγ(r+lα,η)+cβ(r)cγ(rlα,η)],absent12delimited-[]superscriptsubscript𝑐𝛽rsubscript𝑐𝛾rsubscriptl𝛼𝜂superscriptsubscript𝑐𝛽rsubscript𝑐𝛾rsubscriptl𝛼𝜂\displaystyle=\frac{1}{2}\left[c_{\beta}^{\dagger}({\textbf{r}})c_{\gamma}({%\textbf{r}}+{\textbf{l}}_{\alpha,\eta})+c_{\beta}^{\dagger}({\textbf{r}})c_{%\gamma}({\textbf{r}}-{\textbf{l}}_{\alpha,\eta})\right],= divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ italic_c start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( r ) italic_c start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( r + l start_POSTSUBSCRIPT italic_α , italic_η end_POSTSUBSCRIPT ) + italic_c start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( r ) italic_c start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( r - l start_POSTSUBSCRIPT italic_α , italic_η end_POSTSUBSCRIPT ) ] ,(2)
Bα,,η(r)subscript𝐵𝛼𝜂r\displaystyle B_{\alpha,-,\eta}({\textbf{r}})italic_B start_POSTSUBSCRIPT italic_α , - , italic_η end_POSTSUBSCRIPT ( r )=i2[cβ(r)cγ(r+lα,η)cβ(r)cγ(rlα,η)],absent𝑖2delimited-[]superscriptsubscript𝑐𝛽rsubscript𝑐𝛾rsubscriptl𝛼𝜂superscriptsubscript𝑐𝛽rsubscript𝑐𝛾rsubscriptl𝛼𝜂\displaystyle=\frac{i}{2}\left[c_{\beta}^{\dagger}({\textbf{r}})c_{\gamma}({%\textbf{r}}+{\textbf{l}}_{\alpha,\eta})-c_{\beta}^{\dagger}({\textbf{r}})c_{%\gamma}({\textbf{r}}-{\textbf{l}}_{\alpha,\eta})\right],= divide start_ARG italic_i end_ARG start_ARG 2 end_ARG [ italic_c start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( r ) italic_c start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( r + l start_POSTSUBSCRIPT italic_α , italic_η end_POSTSUBSCRIPT ) - italic_c start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( r ) italic_c start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( r - l start_POSTSUBSCRIPT italic_α , italic_η end_POSTSUBSCRIPT ) ] ,(3)

where η𝜂\etaitalic_η denotes NN and NNN bonds, and the corresponding displacement vectors connecting the two sites of β𝛽\betaitalic_β and γ𝛾\gammaitalic_γ sublattices are lα,NN=12𝒂αsubscriptl𝛼NN12subscript𝒂𝛼{\textbf{l}}_{\alpha,\text{NN}}=\frac{1}{2}{{\bm{a}}}_{\alpha}l start_POSTSUBSCRIPT italic_α , NN end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG bold_italic_a start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT and lα,NNN=12(𝒂β𝒂γ)subscriptl𝛼NNN12subscript𝒂𝛽subscript𝒂𝛾{\textbf{l}}_{\alpha,\text{NNN}}=\frac{1}{2}({{\bm{a}}}_{\beta}-{{\bm{a}}}_{%\gamma})l start_POSTSUBSCRIPT italic_α , NNN end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( bold_italic_a start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT - bold_italic_a start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ), respectively.Performing Fourier transformation, the bond order operators in the momentum space can be written as,

Bα,±,η(q)=1Nkfα,±,η(k)cβ(k+q)cγ(k),subscript𝐵𝛼plus-or-minus𝜂q1𝑁subscriptksubscript𝑓𝛼plus-or-minus𝜂ksubscriptsuperscript𝑐𝛽kqsubscript𝑐𝛾kB_{\alpha,\pm,\eta}({\textbf{q}})=\frac{1}{\sqrt{N}}\sum_{{\textbf{k}}}f_{%\alpha,\pm,\eta}({\textbf{k}})c^{\dagger}_{\beta}({\textbf{k}}+{\textbf{q}})c_%{\gamma}({\textbf{k}}),italic_B start_POSTSUBSCRIPT italic_α , ± , italic_η end_POSTSUBSCRIPT ( q ) = divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_N end_ARG end_ARG ∑ start_POSTSUBSCRIPT k end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_α , ± , italic_η end_POSTSUBSCRIPT ( k ) italic_c start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ( k + q ) italic_c start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( k ) ,(4)

with fα,+,η(k)=cos(𝐤𝐥α,η)subscript𝑓𝛼𝜂k𝐤subscript𝐥𝛼𝜂f_{\alpha,+,\eta}({\textbf{k}})=\cos(\mathbf{k\cdot l}_{\alpha,\eta})italic_f start_POSTSUBSCRIPT italic_α , + , italic_η end_POSTSUBSCRIPT ( k ) = roman_cos ( bold_k ⋅ bold_l start_POSTSUBSCRIPT italic_α , italic_η end_POSTSUBSCRIPT ) and fα,,η(k)=sin(𝐤𝐥α,η)subscript𝑓𝛼𝜂k𝐤subscript𝐥𝛼𝜂f_{\alpha,-,\eta}({\textbf{k}})=\sin(\mathbf{k\cdot l}_{\alpha,\eta})italic_f start_POSTSUBSCRIPT italic_α , - , italic_η end_POSTSUBSCRIPT ( k ) = roman_sin ( bold_k ⋅ bold_l start_POSTSUBSCRIPT italic_α , italic_η end_POSTSUBSCRIPT ) being the form factors of symmetric and antisymmetric bonds, respectively.We note that the antisymmetric bond defined in this work differs from that in Refs. [30] and [40] by a factor of i𝑖iitalic_i, which leads to a real form factor in Eq. (4).Clearly, including NN and NNN bonds, there are in total 12 independent bond orders indexed by (α,±,η)𝛼plus-or-minus𝜂(\alpha,\pm,\eta)( italic_α , ± , italic_η ) within each unit cell.To simplify their indices, we introduce one-dimensional indices m,n={1,2,,12}𝑚𝑛1212m,n=\{1,2,\cdots,12\}italic_m , italic_n = { 1 , 2 , ⋯ , 12 } ={(1,+,NN)=\{({1,+,\text{NN}})= { ( 1 , + , NN ), (1,,NN)1NN({1,-,\text{NN}})( 1 , - , NN ), 12,31231\rightarrow 2,31 → 2 , 3, NNNNN}\text{NN}\rightarrow\text{NNN}\big{\}}NN → NNN }.Note that the bond orders are complex in general, we thus introduce their conjugate partners as well, Bα,±,η(r)[Bα,±,η(r)]subscriptsuperscript𝐵𝛼plus-or-minus𝜂rsuperscriptdelimited-[]subscript𝐵𝛼plus-or-minus𝜂rB^{\dagger}_{\alpha,\pm,\eta}({\textbf{r}})\equiv[B_{\alpha,\pm,\eta}({\textbf%{r}})]^{\dagger}italic_B start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_α , ± , italic_η end_POSTSUBSCRIPT ( r ) ≡ [ italic_B start_POSTSUBSCRIPT italic_α , ± , italic_η end_POSTSUBSCRIPT ( r ) ] start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT in real space and, consequently,[Bα,±,η(q)]=Bα,±,η(q)superscriptdelimited-[]subscript𝐵𝛼plus-or-minus𝜂qsuperscriptsubscript𝐵𝛼plus-or-minus𝜂q[B_{\alpha,\pm,\eta}({\textbf{q}})]^{\dagger}=B_{\alpha,\pm,\eta}^{\dagger}(-{%\textbf{q}})[ italic_B start_POSTSUBSCRIPT italic_α , ± , italic_η end_POSTSUBSCRIPT ( q ) ] start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT = italic_B start_POSTSUBSCRIPT italic_α , ± , italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ( - q ) in momentum space.

To investigate the intrinsic fluctuations of different charge orders, we calculate the corresponding susceptibilities defined as,

χpq(q,iωn)=0β𝑑τeiωnτTτ𝒪p(q,τ)[𝒪q(q,0)].subscriptχ𝑝𝑞q𝑖subscript𝜔𝑛superscriptsubscript0𝛽differential-d𝜏superscript𝑒𝑖subscript𝜔𝑛𝜏delimited-⟨⟩subscript𝑇𝜏subscript𝒪𝑝q𝜏superscriptdelimited-[]subscript𝒪𝑞q0\chiup_{pq}({\textbf{q}},i\omega_{n})=\int_{0}^{\beta}d\tau e^{i\omega_{n}\tau%}\langle T_{\tau}\mathcal{O}_{p}({\textbf{q}},\tau)[\mathcal{O}_{q}({\textbf{q%}},0)]^{\dagger}\rangle.roman_χ start_POSTSUBSCRIPT italic_p italic_q end_POSTSUBSCRIPT ( q , italic_i italic_ω start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_β end_POSTSUPERSCRIPT italic_d italic_τ italic_e start_POSTSUPERSCRIPT italic_i italic_ω start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_τ end_POSTSUPERSCRIPT ⟨ italic_T start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( q , italic_τ ) [ caligraphic_O start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( q , 0 ) ] start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT ⟩ .(5)

Here the operator 𝒪psubscript𝒪𝑝\mathcal{O}_{p}caligraphic_O start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT runs over the 27 charge orders mentioned above, consisting of 24 bond orders in the order of {B1,B1,B2,B2,B12,B12}subscript𝐵1subscriptsuperscript𝐵1subscript𝐵2subscriptsuperscript𝐵2subscript𝐵12subscriptsuperscript𝐵12\{B_{1},B^{\dagger}_{1},B_{2},B^{\dagger}_{2},\cdots B_{12},B^{\dagger}_{12}\}{ italic_B start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_B start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_B start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , ⋯ italic_B start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT , italic_B start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT } followed by the 3 onsite charge orders {n1subscript𝑛1n_{1}italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, n2subscript𝑛2n_{2}italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, n3subscript𝑛3n_{3}italic_n start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT}. The bare static susceptibility is given by χpq0(q)χpq(q,0)subscriptsuperscriptχ0𝑝𝑞qsubscriptχ𝑝𝑞q0\chiup^{0}_{pq}({\textbf{q}})\equiv\chiup_{pq}({\textbf{q}},0)roman_χ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p italic_q end_POSTSUBSCRIPT ( q ) ≡ roman_χ start_POSTSUBSCRIPT italic_p italic_q end_POSTSUBSCRIPT ( q , 0 ).For the convenience of discussion, we use different notations to distinguish the susceptibilities of onsite and bond charge orders in the following, and we further note that the latter can be categorized into two types.Explicitly, 3×3333\times 33 × 3 susceptibility matrix for onsite charge orders Ωαβ0subscriptsuperscriptΩ0𝛼𝛽\Omega^{0}_{\alpha\beta}roman_Ω start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_α italic_β end_POSTSUBSCRIPT = χ24+α,24+β0subscriptsuperscriptχ024𝛼24𝛽\chiup^{0}_{24+\alpha,24+\beta}roman_χ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 24 + italic_α , 24 + italic_β end_POSTSUBSCRIPT, and 24×24242424\times 2424 × 24 susceptibilities for bond charge orders Πmn0subscriptsuperscriptΠ0𝑚𝑛\Pi^{0}_{mn}roman_Π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m italic_n end_POSTSUBSCRIPT = χ2m1,2n10subscriptsuperscriptχ02𝑚12𝑛1\chiup^{0}_{2m-1,2n-1}roman_χ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 italic_m - 1 , 2 italic_n - 1 end_POSTSUBSCRIPT = χ2m,2n0subscriptsuperscriptχ02𝑚2𝑛\chiup^{0}_{2m,2n}roman_χ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 italic_m , 2 italic_n end_POSTSUBSCRIPT and Ξmn0subscriptsuperscriptΞ0𝑚𝑛\Xi^{0}_{mn}roman_Ξ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m italic_n end_POSTSUBSCRIPT = χ2m1,2n0subscriptsuperscriptχ02𝑚12𝑛\chiup^{0}_{2m-1,2n}roman_χ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 italic_m - 1 , 2 italic_n end_POSTSUBSCRIPT = χ2m,2n10subscriptsuperscriptχ02𝑚2𝑛1\chiup^{0}_{2m,2n-1}roman_χ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 italic_m , 2 italic_n - 1 end_POSTSUBSCRIPT with m,n=1,,12formulae-sequence𝑚𝑛112m,n=1,\cdots,12italic_m , italic_n = 1 , ⋯ , 12.The corresponding Feynman diagrams for ΩΩ\Omegaroman_Ω are just the normal bubbles while those for ΠΠ\Piroman_Π and ΞΞ\Xiroman_Ξ carry two additional vertices of form factors, as depicted in Fig. 1(c) and Fig. 1(d).The analytical expressions of ΩΩ\Omegaroman_Ω, ΠΠ\Piroman_Π, and ΞΞ\Xiroman_Ξ are given by

Ωαβ0(q)=TNk,lsubscriptsuperscriptΩ0𝛼𝛽q𝑇𝑁subscriptk𝑙\displaystyle\Omega^{0}_{\alpha\beta}({\textbf{q}})=-\frac{T}{N}\sum_{{\textbf%{k}},l}roman_Ω start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_α italic_β end_POSTSUBSCRIPT ( q ) = - divide start_ARG italic_T end_ARG start_ARG italic_N end_ARG ∑ start_POSTSUBSCRIPT k , italic_l end_POSTSUBSCRIPTGβα0(k+q,iωl)Gαβ0(k,iωl),subscriptsuperscript𝐺0𝛽𝛼kq𝑖subscript𝜔𝑙subscriptsuperscript𝐺0𝛼𝛽k𝑖subscript𝜔𝑙\displaystyle G^{0}_{\beta\alpha}({\textbf{k}}+{\textbf{q}},i\omega_{l})G^{0}_%{\alpha\beta}({\textbf{k}},i\omega_{l}),italic_G start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_β italic_α end_POSTSUBSCRIPT ( k + q , italic_i italic_ω start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) italic_G start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_α italic_β end_POSTSUBSCRIPT ( k , italic_i italic_ω start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ,(6)
Πmn0(q)=TNk,lsubscriptsuperscriptΠ0𝑚𝑛q𝑇𝑁subscriptk𝑙\displaystyle\Pi^{0}_{mn}({\textbf{q}})=-\frac{T}{N}\sum_{{\textbf{k}},l}roman_Π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m italic_n end_POSTSUBSCRIPT ( q ) = - divide start_ARG italic_T end_ARG start_ARG italic_N end_ARG ∑ start_POSTSUBSCRIPT k , italic_l end_POSTSUBSCRIPTfm(k)fn(k)subscript𝑓𝑚ksubscript𝑓𝑛k\displaystyle f_{m}({\textbf{k}})f_{n}({\textbf{k}})italic_f start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( k ) italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( k )
×\displaystyle\times×Gβnβm0(k+q,iωl)Gγmγn0(k,iωl),subscriptsuperscript𝐺0subscript𝛽𝑛subscript𝛽𝑚kq𝑖subscript𝜔𝑙subscriptsuperscript𝐺0subscript𝛾𝑚subscript𝛾𝑛k𝑖subscript𝜔𝑙\displaystyle G^{0}_{\beta_{n}\beta_{m}}({\textbf{k}}+{\textbf{q}},i\omega_{l}%)G^{0}_{\gamma_{m}\gamma_{n}}({\textbf{k}},i\omega_{l}),italic_G start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( k + q , italic_i italic_ω start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) italic_G start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_γ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_γ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( k , italic_i italic_ω start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ,(7)
Ξmn0(q)=TNk,lsubscriptsuperscriptΞ0𝑚𝑛q𝑇𝑁subscriptk𝑙\displaystyle\Xi^{0}_{mn}({\textbf{q}})=-\frac{T}{N}\sum_{{\textbf{k}},l}roman_Ξ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m italic_n end_POSTSUBSCRIPT ( q ) = - divide start_ARG italic_T end_ARG start_ARG italic_N end_ARG ∑ start_POSTSUBSCRIPT k , italic_l end_POSTSUBSCRIPTfm(k+q)fn(k)subscript𝑓𝑚kqsubscript𝑓𝑛k\displaystyle f_{m}({\textbf{k}}+{\textbf{q}})f_{n}({\textbf{k}})italic_f start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( k + q ) italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( k )
×\displaystyle\times×Gβnγm0(k+q,iωl)Gβmγn0(k,iωl),subscriptsuperscript𝐺0subscript𝛽𝑛subscript𝛾𝑚kq𝑖subscript𝜔𝑙subscriptsuperscript𝐺0subscript𝛽𝑚subscript𝛾𝑛k𝑖subscript𝜔𝑙\displaystyle G^{0}_{\beta_{n}\gamma_{m}}({\textbf{k}}+{\textbf{q}},i\omega_{l%})G^{0}_{\beta_{m}\gamma_{n}}({\textbf{k}},i\omega_{l}),italic_G start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_γ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( k + q , italic_i italic_ω start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) italic_G start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_γ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( k , italic_i italic_ω start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ,(8)

where the noninteracting Green’s function Gβγ0(k,iωl)=νaβν(k)aγν(k)/(iωlϵνk)subscriptsuperscript𝐺0𝛽𝛾k𝑖subscript𝜔𝑙subscript𝜈subscript𝑎𝛽𝜈ksubscriptsuperscript𝑎𝛾𝜈k𝑖subscript𝜔𝑙subscriptitalic-ϵ𝜈kG^{0}_{\beta\gamma}({\textbf{k}},i\omega_{l})=\sum_{\nu}a_{\beta\nu}({\textbf{%k}})a^{*}_{\gamma\nu}({\textbf{k}})/(i\omega_{l}-\epsilon_{\nu{\textbf{k}}})italic_G start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_β italic_γ end_POSTSUBSCRIPT ( k , italic_i italic_ω start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) = ∑ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_β italic_ν end_POSTSUBSCRIPT ( k ) italic_a start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_γ italic_ν end_POSTSUBSCRIPT ( k ) / ( italic_i italic_ω start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT - italic_ϵ start_POSTSUBSCRIPT italic_ν k end_POSTSUBSCRIPT ) with ϵνksubscriptitalic-ϵ𝜈k\epsilon_{\nu{\textbf{k}}}italic_ϵ start_POSTSUBSCRIPT italic_ν k end_POSTSUBSCRIPT being the ν𝜈\nuitalic_ν-th eigen energy of 0subscript0\mathcal{H}_{0}caligraphic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and aβν(k)subscript𝑎𝛽𝜈ka_{\beta\nu}({\textbf{k}})italic_a start_POSTSUBSCRIPT italic_β italic_ν end_POSTSUBSCRIPT ( k ) the corresponding eigen state. The summation over the fermionic Matsubara frequency ωl=(2l+1)πkBTsubscript𝜔𝑙2𝑙1𝜋subscript𝑘𝐵𝑇\omega_{l}=(2l+1)\pi k_{B}Titalic_ω start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = ( 2 italic_l + 1 ) italic_π italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_T at temperature T𝑇Titalic_T yields the lindhard function and sublattice-associated matrix elements with the detailed formulas given in the supplementary material (SM).These sublattice characters embedded in the noninteracting Green’s functions play a predominant role in determining the behavior of suscpetibilities.The diagram with only one vertex displayed in Fig. 1(e) represents the susceptibility in the mixed channel that couples the onsite and bond charge orders.

Before presenting the numerical data, we analyse the contributions to the bare susceptibilities from the VH points.At the p𝑝pitalic_p-type VH filling, the hexagonal Fermi surface encompasses the three inequivalent VH points labeled by M1,2,3subscriptM123{{\textbf{M}}}_{1,2,3}M start_POSTSUBSCRIPT 1 , 2 , 3 end_POSTSUBSCRIPT at the zone boundary and features perfect nesting with three wave vectors Qα=12GαsubscriptQ𝛼12subscriptG𝛼{\textbf{Q}}_{\alpha}={1\over 2}{\textbf{G}}_{\alpha}Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG G start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT, where GαsubscriptG𝛼{\textbf{G}}_{\alpha}G start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT denotes the reciprocal wave vector of the kagome lattice.These VH points with diverging density of states (DOS) are expected to contribute dominantly to the susceptibilities, especially at the two pertinent vectors, q=0q0{\textbf{q}}=0q = 0 and q=QαMαqsubscriptQ𝛼subscriptM𝛼{\textbf{q}}={\textbf{Q}}_{\alpha}\equiv{{\textbf{M}}}_{\alpha}q = Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ≡ M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT.Furthermore, as mentioned before and shown in Fig. 1(b), the Bloch states at MαsubscriptM𝛼{{\textbf{M}}}_{\alpha}M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT points are exclusively localized on the α𝛼\alphaitalic_αth sublattice.Consequently, the Green’s functions at MαsubscriptM𝛼{{\textbf{M}}}_{\alpha}M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT are non vanishing only for Gαα0(Mα)subscriptsuperscript𝐺0𝛼𝛼subscriptM𝛼G^{0}_{\alpha\alpha}({{\textbf{M}}}_{\alpha})italic_G start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_α italic_α end_POSTSUBSCRIPT ( M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ).It is thus straightforward to show that these VH points contribute only to the diagonal elements of the onsite charge susceptibilities at q=0q0{\textbf{q}}=0q = 0, Ωαα(0)subscriptΩ𝛼𝛼0\Omega_{\alpha\alpha}(0)roman_Ω start_POSTSUBSCRIPT italic_α italic_α end_POSTSUBSCRIPT ( 0 ), while their contributions to off-diagonal elements of Ω(0)Ω0\Omega(0)roman_Ω ( 0 ) and all bond susceptibilities, Π(0)Π0\Pi(0)roman_Π ( 0 ) and Ξ(0)Ξ0\Xi(0)roman_Ξ ( 0 ), vanish. This results a dominant onsite charge fluctuation at q=0q0{\textbf{q}}=0q = 0.The situation is, however, completely the opposite for wave vector q=MαqsubscriptM𝛼{\textbf{q}}={{\textbf{M}}}_{\alpha}q = M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT.The two VH points MβsubscriptM𝛽{{\textbf{M}}}_{\beta}M start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT and MγsubscriptM𝛾{{\textbf{M}}}_{\gamma}M start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT connected by q=QαqsubscriptQ𝛼{\textbf{q}}={\textbf{Q}}_{\alpha}q = Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT feature pure β𝛽\betaitalic_βth and γ𝛾\gammaitalic_γth sublattice, respectively. This feature leads to the vanishing contribution of VH points in the onsite charge fluctuation Ωαα′′0(Mα)subscriptsuperscriptΩ0superscript𝛼superscript𝛼′′subscriptM𝛼\Omega^{0}_{\alpha^{\prime}\alpha^{\prime\prime}}({{\textbf{M}}}_{\alpha})roman_Ω start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_α start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ). But these two VH points can thus dominantly contribute to the susceptibilities Π(Mα)ΠsubscriptM𝛼\Pi({{\textbf{M}}}_{\alpha})roman_Π ( M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) of the bonds that connecting β𝛽\betaitalic_β and γ𝛾\gammaitalic_γ sublattices.We note that they have no contributions to Ξ(Mα)ΞsubscriptM𝛼\Xi({{\textbf{M}}}_{\alpha})roman_Ξ ( M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) since at least one of the two Green’s function in Eq. (8) involves mixed sublattices. This indicates predominant bond fluctuations at q=MαqsubscriptM𝛼{\textbf{q}}={{\textbf{M}}}_{\alpha}q = M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT rather onsite charge fluctuations.Furthermore, since Mβ/γlα,NN=π2subscriptM𝛽𝛾subscriptl𝛼NN𝜋2{{\textbf{M}}}_{\beta/\gamma}\cdot{\textbf{l}}_{\alpha,\text{NN}}={\pi\over 2}M start_POSTSUBSCRIPT italic_β / italic_γ end_POSTSUBSCRIPT ⋅ l start_POSTSUBSCRIPT italic_α , NN end_POSTSUBSCRIPT = divide start_ARG italic_π end_ARG start_ARG 2 end_ARG and Mβ/γlα,NNN=±π2subscriptM𝛽𝛾subscriptl𝛼NNNplus-or-minus𝜋2{{\textbf{M}}}_{\beta/\gamma}\cdot{\textbf{l}}_{\alpha,\text{NNN}}=\pm{\pi%\over 2}M start_POSTSUBSCRIPT italic_β / italic_γ end_POSTSUBSCRIPT ⋅ l start_POSTSUBSCRIPT italic_α , NNN end_POSTSUBSCRIPT = ± divide start_ARG italic_π end_ARG start_ARG 2 end_ARG, the contribution from these two VH points to the susceptibilities of symmetric bonds with form factors cos(𝐤𝐥α,η)𝐤subscript𝐥𝛼𝜂\cos(\mathbf{k\cdot l}_{\alpha,\eta})roman_cos ( bold_k ⋅ bold_l start_POSTSUBSCRIPT italic_α , italic_η end_POSTSUBSCRIPT ) also vanishes.Therefore, at the wave vector q=MαqsubscriptM𝛼{\textbf{q}}={{\textbf{M}}}_{\alpha}q = M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT, the two connected VH points at MβsubscriptM𝛽{{\textbf{M}}}_{\beta}M start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT and MγsubscriptM𝛾{{\textbf{M}}}_{\gamma}M start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT, with ϵαβγ=1subscriptitalic-ϵ𝛼𝛽𝛾1\epsilon_{\alpha\beta\gamma}=1italic_ϵ start_POSTSUBSCRIPT italic_α italic_β italic_γ end_POSTSUBSCRIPT = 1, contribute only to the elements of Π(Mα)ΠsubscriptM𝛼\Pi({{\textbf{M}}}_{\alpha})roman_Π ( M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) associated with the antisymmetric bonds that connects β𝛽\betaitalic_β and γ𝛾\gammaitalic_γ sublattices.Explicitly, taking q=M1qsubscriptM1{\textbf{q}}={{\textbf{M}}}_{1}q = M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT as an example, the VH points contribute only to susceptibility Π22(M1)subscriptΠ22subscriptM1\Pi_{22}({{\textbf{M}}}_{1})roman_Π start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT ( M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) for bond B2=B1,,NNsubscript𝐵2subscript𝐵1NNB_{2}=B_{1,-,\text{NN}}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 1 , - , NN end_POSTSUBSCRIPT, Π88(M1)subscriptΠ88subscriptM1\Pi_{88}({{\textbf{M}}}_{1})roman_Π start_POSTSUBSCRIPT 88 end_POSTSUBSCRIPT ( M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) for bond B8=B1,,NNNsubscript𝐵8subscript𝐵1NNNB_{8}=B_{1,-,\text{NNN}}italic_B start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = italic_B start_POSTSUBSCRIPT 1 , - , NNN end_POSTSUBSCRIPT, and Π28(M1)subscriptΠ28subscriptM1\Pi_{28}({{\textbf{M}}}_{1})roman_Π start_POSTSUBSCRIPT 28 end_POSTSUBSCRIPT ( M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) that couples B2subscript𝐵2B_{2}italic_B start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and B8subscript𝐵8B_{8}italic_B start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT.Clearly, the unique sublattice texture at the p𝑝pitalic_p-type VH filling plays a pivotal role in suppressing the onsite charge fluctuations at wavevector q=MαqsubscriptM𝛼{\textbf{q}}={{\textbf{M}}}_{\alpha}q = M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT but significantly promoting the bond charge fluctuations in the antisymmetric channel.This behavior in the kagome lattice markedly differs from what is observed in the triangular and honeycomb lattices, where onsite charge fluctuations are dominant [42, 43].Additionally, it is readily shown that the contribution from the VH points to the susceptibilities in the mixed channels depicted in Fig. 1(e) vanishes as well at both q=0q0{\textbf{q}}=0q = 0 and q=MαqsubscriptM𝛼{\textbf{q}}={{\textbf{M}}}_{\alpha}q = M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT.

Exotic charge density waves and superconductivity on the Kagome Lattice (2)

The calculated bare susceptibilities are presented in detail in the SM, with the representative elements displayed in Fig. 2(a) along the high-symmetry path ΓΓ\Gammaroman_Γ-M1subscriptM1{{\textbf{M}}}_{1}M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-K-ΓΓ\Gammaroman_Γ depicted in Fig. 1(b).A temperature of kBT=0.005subscript𝑘𝐵𝑇0.005k_{B}T=0.005italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_T = 0.005 is applied in the calculation, under which the dominant fluctuations are reflected by the peaks at q=0q0{\textbf{q}}=0q = 0 and q=MαqsubscriptM𝛼{\textbf{q}}={{\textbf{M}}}_{\alpha}q = M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT.Indeed, as suggested by the above analysis of the contribution from the VH points, the diagonal elements of onsite charge susceptibilities ΩααsubscriptΩ𝛼𝛼\Omega_{\alpha\alpha}roman_Ω start_POSTSUBSCRIPT italic_α italic_α end_POSTSUBSCRIPT dominate at q=0q0{\textbf{q}}=0q = 0, while the leading susceptibilities at q=M1qsubscriptM1{\textbf{q}}={{\textbf{M}}}_{1}q = M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT are Π22subscriptΠ22\Pi_{22}roman_Π start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT, Π88subscriptΠ88\Pi_{88}roman_Π start_POSTSUBSCRIPT 88 end_POSTSUBSCRIPT, and Π28subscriptΠ28\Pi_{28}roman_Π start_POSTSUBSCRIPT 28 end_POSTSUBSCRIPT of the antisymmetric bonds connecting the two sites of 2nd and 3rd sublattices.The large Π280(M1)subscriptsuperscriptΠ028subscriptM1\Pi^{0}_{28}({{\textbf{M}}}_{1})roman_Π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 28 end_POSTSUBSCRIPT ( M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) shown in Fig. 2(a) indicates the strong coupling between the NN and NNN antisymmetric bond orders.These results promote the leading fluctuations in the antisymmetric bond channel, instead of symmetric bond or onsite charge channels.However, the nature of the antisymmetric bond order is yet to be explored.

To reveal the nature of the antisymmetric bond order which exhibits the leading fluctuation at the nesting wavevector MαsubscriptM𝛼{{\textbf{M}}}_{\alpha}M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT, we further separate the bond orders into their real and imaginary parts,

Bm(q)subscriptsuperscript𝐵𝑚q\displaystyle B^{\prime}_{m}({\textbf{q}})italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( q )=12[Bm+Bm],Bm′′(q)=12i[BmBm],modd,formulae-sequenceabsent12delimited-[]subscript𝐵𝑚subscriptsuperscript𝐵𝑚formulae-sequencesubscriptsuperscript𝐵′′𝑚q12𝑖delimited-[]subscript𝐵𝑚subscriptsuperscript𝐵𝑚𝑚odd\displaystyle=\frac{1}{2}[B_{m}+B^{\dagger}_{m}],\text{ }B^{\prime\prime}_{m}(%{\textbf{q}})=\frac{1}{2i}[B_{m}-B^{\dagger}_{m}],\text{ }m\in\text{odd},= divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ italic_B start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT + italic_B start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ] , italic_B start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( q ) = divide start_ARG 1 end_ARG start_ARG 2 italic_i end_ARG [ italic_B start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT - italic_B start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ] , italic_m ∈ odd ,(9)
Bm(q)subscriptsuperscript𝐵𝑚q\displaystyle B^{\prime}_{m}({\textbf{q}})italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( q )=12i[BmBm],Bm′′(q)=12[Bm+Bm],meven.formulae-sequenceabsent12𝑖delimited-[]subscript𝐵𝑚subscriptsuperscript𝐵𝑚formulae-sequencesubscriptsuperscript𝐵′′𝑚q12delimited-[]subscript𝐵𝑚subscriptsuperscript𝐵𝑚𝑚even\displaystyle=\frac{1}{2i}[B_{m}-B^{\dagger}_{m}],\text{ }B^{\prime\prime}_{m}%({\textbf{q}})=\frac{1}{2}[B_{m}+B^{\dagger}_{m}],\text{ }m\in\text{even}.= divide start_ARG 1 end_ARG start_ARG 2 italic_i end_ARG [ italic_B start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT - italic_B start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ] , italic_B start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( q ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ italic_B start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT + italic_B start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ] , italic_m ∈ even .(10)

Here the definition in the antisymmetric bond channel is different because of the additional factor i𝑖iitalic_i used in Eq. (3).Bmsubscriptsuperscript𝐵𝑚B^{\prime}_{m}italic_B start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT and Bm′′subscriptsuperscript𝐵′′𝑚B^{\prime\prime}_{m}italic_B start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT represent the hopping and current modulation on the bonds, respectively.It is straightforward to show that the static susceptibilities of the real and imaginary bond charge orders can be rewritten as,

χmm(q)subscriptsuperscriptχ𝑚𝑚q\displaystyle\chiup^{\prime}_{mm}({\textbf{q}})roman_χ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m italic_m end_POSTSUBSCRIPT ( q )=[Πmm(𝒒)(1)mΞmm(𝒒)]/2,absentdelimited-[]subscriptΠ𝑚𝑚𝒒superscript1𝑚subscriptΞ𝑚𝑚𝒒2\displaystyle=[\Pi_{mm}(\bm{q})-(-1)^{m}\Xi_{mm}(\bm{q})]/2,= [ roman_Π start_POSTSUBSCRIPT italic_m italic_m end_POSTSUBSCRIPT ( bold_italic_q ) - ( - 1 ) start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_m italic_m end_POSTSUBSCRIPT ( bold_italic_q ) ] / 2 ,
χmm′′(𝒒)subscriptsuperscriptχ′′𝑚𝑚𝒒\displaystyle\chiup^{\prime\prime}_{mm}(\bm{q})roman_χ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_m italic_m end_POSTSUBSCRIPT ( bold_italic_q )=[Πmm(𝒒)+(1)mΞmm(𝒒)]/2.absentdelimited-[]subscriptΠ𝑚𝑚𝒒superscript1𝑚subscriptΞ𝑚𝑚𝒒2\displaystyle=[\Pi_{mm}(\bm{q})+(-1)^{m}\Xi_{mm}(\bm{q})]/2.= [ roman_Π start_POSTSUBSCRIPT italic_m italic_m end_POSTSUBSCRIPT ( bold_italic_q ) + ( - 1 ) start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT roman_Ξ start_POSTSUBSCRIPT italic_m italic_m end_POSTSUBSCRIPT ( bold_italic_q ) ] / 2 .(11)

Clearly, the relative strength of real and imaginary bond fluctuations is dictated by the sign of Ξ(Mα)ΞsubscriptM𝛼\Xi({{\textbf{M}}}_{\alpha})roman_Ξ ( M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ). According to previous line of reasoning, the VH points contribute nothing to ΞΞ\Xiroman_Ξ, rendering these fluctuations degenerate when considering only states at VH points.As a result, one has to go beyond the VH points and consider the contributions from other portions of the hexagonal FS to determine the sign of Ξ(Mα)ΞsubscriptM𝛼\Xi({{\textbf{M}}}_{\alpha})roman_Ξ ( M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ).

We consider the diagonal elements of ΞΞ\Xiroman_Ξ at q=MαqsubscriptM𝛼{\textbf{q}}={{\textbf{M}}}_{\alpha}q = M start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT for the antisymmetric bonds connecting β𝛽\betaitalic_β and γ𝛾\gammaitalic_γ sublattice, i.e., NN bond B2αsubscript𝐵2𝛼B_{2\alpha}italic_B start_POSTSUBSCRIPT 2 italic_α end_POSTSUBSCRIPT and NNN bond B6+2αsubscript𝐵62𝛼B_{6+2\alpha}italic_B start_POSTSUBSCRIPT 6 + 2 italic_α end_POSTSUBSCRIPT, that are tied to the leading fluctuation.Because of the unique geometry of the kagome lattice, the nesting and connecting vectors satisfy lα,NNQαconditionalsubscriptl𝛼NNsubscriptQ𝛼{\textbf{l}}_{\alpha,\text{NN}}\parallel{\textbf{Q}}_{\alpha}l start_POSTSUBSCRIPT italic_α , NN end_POSTSUBSCRIPT ∥ Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT and lα,NNNQαperpendicular-tosubscriptl𝛼NNNsubscriptQ𝛼{\textbf{l}}_{\alpha,\text{NNN}}\perp{\textbf{Q}}_{\alpha}l start_POSTSUBSCRIPT italic_α , NNN end_POSTSUBSCRIPT ⟂ Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT, leading to Qαlα,NN=πsubscriptQ𝛼subscriptl𝛼NN𝜋{\textbf{Q}}_{\alpha}\cdot{\textbf{l}}_{\alpha,\text{NN}}=\piQ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ⋅ l start_POSTSUBSCRIPT italic_α , NN end_POSTSUBSCRIPT = italic_π and Qαlα,NNN=0subscriptQ𝛼subscriptl𝛼NNN0{\textbf{Q}}_{\alpha}\cdot{\textbf{l}}_{\alpha,\text{NNN}}=0Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ⋅ l start_POSTSUBSCRIPT italic_α , NNN end_POSTSUBSCRIPT = 0.Consequently, for k on the hexgonal FS, the two form factors in Ξ2α,2α(Qα)subscriptΞ2𝛼2𝛼subscriptQ𝛼\Xi_{2\alpha,2\alpha}({\textbf{Q}}_{\alpha})roman_Ξ start_POSTSUBSCRIPT 2 italic_α , 2 italic_α end_POSTSUBSCRIPT ( Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) for the NN antisymmetric bond read f2α(k+Qα)f2α(k)=sin2(klα,NN)0subscript𝑓2𝛼ksubscriptQ𝛼subscript𝑓2𝛼ksuperscript2ksubscriptl𝛼NN0f_{2\alpha}({\textbf{k}}+{\textbf{Q}}_{\alpha})f_{2\alpha}({\textbf{k}})=-\sin%^{2}({\textbf{k}}\cdot{\textbf{l}}_{\alpha,\text{NN}})\leq 0italic_f start_POSTSUBSCRIPT 2 italic_α end_POSTSUBSCRIPT ( k + Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) italic_f start_POSTSUBSCRIPT 2 italic_α end_POSTSUBSCRIPT ( k ) = - roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( k ⋅ l start_POSTSUBSCRIPT italic_α , NN end_POSTSUBSCRIPT ) ≤ 0, whereas the two form factors in Ξ6+2α,6+2α(Qα)subscriptΞ62𝛼62𝛼subscriptQ𝛼\Xi_{6+2\alpha,6+2\alpha}({\textbf{Q}}_{\alpha})roman_Ξ start_POSTSUBSCRIPT 6 + 2 italic_α , 6 + 2 italic_α end_POSTSUBSCRIPT ( Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) for the NNN antisymmetric bond are given by f6+2α(k+Qα)f6+2α(k)=sin2(klα,NNN)0subscript𝑓62𝛼ksubscriptQ𝛼subscript𝑓62𝛼ksuperscript2ksubscriptl𝛼NNN0f_{6+2\alpha}({\textbf{k}}+{\textbf{Q}}_{\alpha})f_{6+2\alpha}({\textbf{k}})=%\sin^{2}({\textbf{k}}\cdot{\textbf{l}}_{\alpha,\text{NNN}})\geq 0italic_f start_POSTSUBSCRIPT 6 + 2 italic_α end_POSTSUBSCRIPT ( k + Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) italic_f start_POSTSUBSCRIPT 6 + 2 italic_α end_POSTSUBSCRIPT ( k ) = roman_sin start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( k ⋅ l start_POSTSUBSCRIPT italic_α , NNN end_POSTSUBSCRIPT ) ≥ 0.These distinctive characteristics suggest that Ξ2α,2α(Qα)subscriptΞ2𝛼2𝛼subscriptQ𝛼\Xi_{2\alpha,2\alpha}({\textbf{Q}}_{\alpha})roman_Ξ start_POSTSUBSCRIPT 2 italic_α , 2 italic_α end_POSTSUBSCRIPT ( Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) and Ξ6+2α,6+2α(Qα)subscriptΞ62𝛼62𝛼subscriptQ𝛼\Xi_{6+2\alpha,6+2\alpha}({\textbf{Q}}_{\alpha})roman_Ξ start_POSTSUBSCRIPT 6 + 2 italic_α , 6 + 2 italic_α end_POSTSUBSCRIPT ( Q start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) have the opposite signs, pointing to the different nature of bond fluctuations on the NN and NNN bonds.Indeed, as shown in Fig. 1(a), Ξ22subscriptΞ22\Xi_{22}roman_Ξ start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT is negative while Ξ88subscriptΞ88\Xi_{88}roman_Ξ start_POSTSUBSCRIPT 88 end_POSTSUBSCRIPT is positive at q=M1qsubscriptM1{\textbf{q}}={{\textbf{M}}}_{1}q = M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT due to the positive Green’s function related sublattice factors.From the Eq. (11), it is apparent that, in the antisymmetric channel, the bare real bond fluctuation on the NN bonds is more pronounced, whereas the bare imaginary bond fluctuation is stronger on the NNN bonds. These distinctive characteristics, determined by the sublattice texture and unique geometry in the kagome lattice, open up the possibility of realizing exotic electronic orders, such as loop current ground states.

III competing electronic states with inter-site Coulomb interactions

To focus on the competition between intrinsic charge orders on the kagome lattice, we consider the simplified spinless model where the spin degree of freedom is removed.In this case, the onsite Coloumb repulsion is absent by the Pauli exclusion and we consider the NN and NNN inter-site Coloumb repulsions,

int=subscriptintabsent\displaystyle\mathcal{H}_{\text{int}}=caligraphic_H start_POSTSUBSCRIPT int end_POSTSUBSCRIPT =ηVηα,r[nβ(r)nγ(r+lη)+nβ(r)nγ(rlη)]subscript𝜂subscript𝑉𝜂subscript𝛼rdelimited-[]subscript𝑛𝛽rsubscript𝑛𝛾rsubscriptl𝜂subscript𝑛𝛽rsubscript𝑛𝛾rsubscriptl𝜂\displaystyle\sum_{\eta}V_{\eta}\sum_{\alpha,{\textbf{r}}}\left[n_{\beta}({%\textbf{r}})n_{\gamma}({\textbf{r}}+{\textbf{l}}_{\eta})+n_{\beta}({\textbf{r}%})n_{\gamma}({\textbf{r}}-{\textbf{l}}_{\eta})\right]∑ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_α , r end_POSTSUBSCRIPT [ italic_n start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ( r ) italic_n start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( r + l start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ) + italic_n start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ( r ) italic_n start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( r - l start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ) ](12)
=\displaystyle==1Nη,αkkq2Vη(q)cβ(k)cβ(k+q)cγ(k+q)cγ(k),1𝑁subscript𝜂𝛼subscriptsuperscriptkkq2subscript𝑉𝜂qsubscriptsuperscript𝑐𝛽ksubscript𝑐𝛽kqsubscriptsuperscript𝑐𝛾superscriptkqsubscript𝑐𝛾superscriptk\displaystyle\frac{1}{N}\sum_{\eta,\alpha}\sum_{{\textbf{k}}{\textbf{k}}^{%\prime}{\textbf{q}}}2V_{\eta}({\textbf{q}})c^{\dagger}_{\beta}({\textbf{k}})c_%{\beta}({\textbf{k}}+{\textbf{q}})c^{\dagger}_{\gamma}({\textbf{k}}^{\prime}+{%\textbf{q}})c_{\gamma}({\textbf{k}}^{\prime}),divide start_ARG 1 end_ARG start_ARG italic_N end_ARG ∑ start_POSTSUBSCRIPT italic_η , italic_α end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT bold_k bold_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT q end_POSTSUBSCRIPT 2 italic_V start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ( q ) italic_c start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ( k ) italic_c start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ( k + q ) italic_c start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + q ) italic_c start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ,

with Vη(q)=Vηcos(qlα,η)subscript𝑉𝜂qsubscript𝑉𝜂qsubscriptl𝛼𝜂V_{\eta}({\textbf{q}})=V_{\eta}\cos({\textbf{q}}\cdot{\textbf{l}}_{\alpha,\eta})italic_V start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ( q ) = italic_V start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_cos ( q ⋅ l start_POSTSUBSCRIPT italic_α , italic_η end_POSTSUBSCRIPT ).The interactions can be decoupled in terms of onsite charge orders

int=η,α,q2Vη(q)[nβ(q)]nγ(q),subscriptintsubscript𝜂𝛼q2subscript𝑉𝜂qsuperscriptdelimited-[]subscript𝑛𝛽qsubscript𝑛𝛾q\mathcal{H}_{\text{int}}=\sum_{\eta,\alpha,{\textbf{q}}}2V_{\eta}({\textbf{q}}%)[n_{\beta}({\textbf{q}})]^{\dagger}n_{\gamma}({\textbf{q}}),caligraphic_H start_POSTSUBSCRIPT int end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_η , italic_α , q end_POSTSUBSCRIPT 2 italic_V start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ( q ) [ italic_n start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ( q ) ] start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( q ) ,(13)

or offsite bond orders

int=η,α,qs=±2Vη[Bα,s,η(q)]Bα,s,η(q).subscriptintsubscript𝜂𝛼qsubscript𝑠plus-or-minus2subscript𝑉𝜂superscriptdelimited-[]subscript𝐵𝛼𝑠𝜂qsubscript𝐵𝛼𝑠𝜂q\mathcal{H}_{\text{int}}=-\sum_{\eta,\alpha,{\textbf{q}}}\sum_{s=\pm}2V_{\eta}%[B_{\alpha,s,\eta}({\textbf{q}})]^{\dagger}B_{\alpha,s,\eta}({\textbf{q}}).caligraphic_H start_POSTSUBSCRIPT int end_POSTSUBSCRIPT = - ∑ start_POSTSUBSCRIPT italic_η , italic_α , q end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_s = ± end_POSTSUBSCRIPT 2 italic_V start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT [ italic_B start_POSTSUBSCRIPT italic_α , italic_s , italic_η end_POSTSUBSCRIPT ( q ) ] start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_B start_POSTSUBSCRIPT italic_α , italic_s , italic_η end_POSTSUBSCRIPT ( q ) .(14)

Once these interactions are introduced, both onsite and bond charge susceptibilities get renormalized. The first-order ladder of bond susceptibilities can be decomposed into the product of bond susceptibilities in different channels, as the interaction carrying internal momentum of fermion propogators can be decoupled owing to Eq.14, derived from Vη(kk)=Vηs=±fα,s,η(k)fα,s,η(k)subscript𝑉𝜂ksuperscriptksubscript𝑉𝜂subscript𝑠plus-or-minussubscript𝑓𝛼𝑠𝜂ksubscript𝑓𝛼𝑠𝜂superscriptkV_{\eta}({\textbf{k}}-{\textbf{k}}^{\prime})=V_{\eta}\sum_{s=\pm}f_{\alpha,s,%\eta}({\textbf{k}})f_{\alpha,s,\eta}({\textbf{k}}^{\prime})italic_V start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ( k - k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_V start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ∑ start_POSTSUBSCRIPT italic_s = ± end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_α , italic_s , italic_η end_POSTSUBSCRIPT ( k ) italic_f start_POSTSUBSCRIPT italic_α , italic_s , italic_η end_POSTSUBSCRIPT ( k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ).The first-order bubble of bond susceptibilities will introduce a susceptibility in the mixed channel with only one vertex (as shown in Fig.1(e)), which is the coupling between bond and onsite charge order. Then, the first-order bubble of this mixed susceptibility will involve the onsite susceptibility. This hierarchy structure can be treated within the susceptibility matrix χχ\chiuproman_χ, which involves both onsite and bond charge orders. We employ the random phase approximation (RPA) summation of all bubble and ladder diagrams (details in SM), that yields the renormalized susceptibility matrix,

χRPA(q)=[1+χ0(q)𝒰c(q)]1χ0(q).subscriptχRPAqsuperscriptdelimited-[]1superscriptχ0qsubscript𝒰𝑐q1superscriptχ0q\displaystyle\chiup_{\text{RPA}}({\textbf{q}})=[1+\chiup^{0}({\textbf{q}})%\mathcal{U}_{c}(\bm{{\textbf{q}}})]^{-1}\chiup^{0}({\textbf{q}}).roman_χ start_POSTSUBSCRIPT RPA end_POSTSUBSCRIPT ( q ) = [ 1 + roman_χ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( q ) caligraphic_U start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( q ) ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_χ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( q ) .(15)

The interaction matrix 𝒰c(q)subscript𝒰𝑐q\mathcal{U}_{c}({\textbf{q}})caligraphic_U start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( q ) is given by,

𝒰c(q)subscript𝒰𝑐q\displaystyle\mathcal{U}_{c}({\textbf{q}})caligraphic_U start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( q )=\displaystyle==(VNNc000VNNNc000Uc(q)),subscriptsuperscript𝑉𝑐NN000subscriptsuperscript𝑉𝑐NNN000superscript𝑈𝑐q\displaystyle\left(\begin{array}[]{ccc}V^{c}_{\text{NN}}&0&0\\0&V^{c}_{\text{NNN}}&0\\0&0&U^{c}({\textbf{q}})\\\end{array}\right),( start_ARRAY start_ROW start_CELL italic_V start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_V start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT NNN end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL italic_U start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ( q ) end_CELL end_ROW end_ARRAY ) ,(19)
Uc(q)superscript𝑈𝑐q\displaystyle{U}^{c}({\textbf{q}})italic_U start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ( q )=\displaystyle==(0V12V13V120V23V13V230),0subscript𝑉12subscript𝑉13subscript𝑉120subscript𝑉23subscript𝑉13subscript𝑉230\displaystyle\left(\begin{array}[]{ccc}0&V_{12}&V_{13}\\V_{12}&0&V_{23}\\V_{13}&V_{23}&0\\\end{array}\right),( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL italic_V start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT end_CELL start_CELL italic_V start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_V start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL italic_V start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_V start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT end_CELL start_CELL italic_V start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) ,(23)
Vηcsubscriptsuperscript𝑉𝑐𝜂\displaystyle V^{c}_{\eta}italic_V start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT=\displaystyle==diag{2Vη,2Vη,},diag2subscript𝑉𝜂2subscript𝑉𝜂\displaystyle-\text{diag}\{2V_{\eta},2V_{\eta},...\},- diag { 2 italic_V start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT , 2 italic_V start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT , … } ,
Vβγsubscript𝑉𝛽𝛾\displaystyle V_{\beta\gamma}italic_V start_POSTSUBSCRIPT italic_β italic_γ end_POSTSUBSCRIPT=\displaystyle==2VNNfα,+,NN(q)+2VNNNfα,+,NNN(q),2subscript𝑉NNsubscript𝑓𝛼NNq2subscript𝑉NNNsubscript𝑓𝛼NNNq\displaystyle 2V_{\text{NN}}f_{\alpha,+,\text{NN}}({\textbf{q}})+2V_{\text{NNN%}}f_{\alpha,+,\text{NNN}}({\textbf{q}}),2 italic_V start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_α , + , NN end_POSTSUBSCRIPT ( q ) + 2 italic_V start_POSTSUBSCRIPT NNN end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_α , + , NNN end_POSTSUBSCRIPT ( q ) ,(24)

with the indices α,β,γ𝛼𝛽𝛾\alpha,\beta,\gammaitalic_α , italic_β , italic_γ being in (α,β,γ)𝛼𝛽𝛾(\alpha,\beta,\gamma)( italic_α , italic_β , italic_γ ). As the temperature decreases, an eigenvalue of the RPA susceptibility χRPAsubscriptχRPA\chiup_{\text{RPA}}roman_χ start_POSTSUBSCRIPT RPA end_POSTSUBSCRIPT at a specific momentum q turns negative, signaling an instability at this q vector. The associated eigenvector contains the structure of the charge instability, i.e. the CDW pattern.

According to our previous analysis, the relevant fluctuations are in the onsite and anti-symmetric bond channels and we thus study the effect of inter-site Coulomb interactions on them. With a typical NN repulsion of VNN=0.6subscript𝑉NN0.6V_{\text{NN}}=0.6italic_V start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT = 0.6, the susceptibilities in various channels χ,′′/Ωsuperscriptχ′′Ω\chiup^{\prime,\prime\prime}/\Omegaroman_χ start_POSTSUPERSCRIPT ′ , ′ ′ end_POSTSUPERSCRIPT / roman_Ω are displayed in Fig.2(b). The NN bond fluctuations are significantly enhanced at the M point but the NN real bond susceptibility is dominant, consistent with previous studies[36, 37]. The NN imaginary bond fluctuation (green dashed line) is the subdominant while the onsite charge fluctuation is quite weak. In contrast, with a moderate NNN repulsion VNN=0.95subscript𝑉NN0.95V_{\text{NN}}=0.95italic_V start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT = 0.95, the susceptibilities of imaginary bond orders are significant at the M point and the NNN imaginary bond susceptibility is much larger than the others, as shown in Fig.2(c). This indicates that the NNN repulsion can promote the imaginary bond fluctuation on the NNN bond. When both NN and NNN repulsions are substantial, the onsite charge fluctuation at 𝐪=𝟎𝐪0\bf{q}=0bold_q = bold_0 exceeds the bond fluctuations at the M point and becomes dominant, as shown in Fig.2(d). Meanwhile, the enhancement of the onsite charge susceptibility at the M point always remains weak, due to the aforementioned sublattice interference effect.

Exotic charge density waves and superconductivity on the Kagome Lattice (3)

We further scrutinize the eigenvalues of χRPA(q)subscriptχRPAq\chiup_{\text{RPA}}({\textbf{q}})roman_χ start_POSTSUBSCRIPT RPA end_POSTSUBSCRIPT ( q ) to study the particle-hole instabilities with decreasing temperature. The obtained phase diagram is displayed in Fig.3(a), with color representing the transition temperatures. When the NN repulsion is dominant and the NNN repulsion is weak (region I), the susceptibility of real bond order at three M points first diverges as the temperature decreases and the system favors the charge bond order (CBO). For a dominant NNN repulsion (region II), the imaginary bond order, i.e. loop current order (LCO), is the leading instability. Due to the coupling between bond order on the NN and NNN bonds, both CBO and LCO exhibit a sizable mixture between these bonds, as shown in Fig.3 (b) and (c). These particle-hole instabilities are consistent with our weak-coupling analysis, which indicates that the real bond order generates uniform larger gaps on the Fermi surface for the NN channel and the imaginary bond order produces larger gaps on the Fermi surface for the NNN channel (details in SM).When both NN and NNN repulsions are strong (region III), the two-fold charge order with q=0q0{\textbf{q}}=0q = 0 is favored and characterized by a mixture of onsite and symmetric bond orders (shown in Fig.3 (d)). The onsite order, characterized by distinct occupations on three sublattices, is dubbed as nematic sublattice density modulation (nSDM) and exhibits an electrostatic energy gain that scales linearly with the increasing inter-sublattice repulsion. When the Coulomb repulsion is relatively weak, this energy gain is small and charge bond orders predominate. However, as the repulsion strengthens, the energy benefit of the onsite charge order increases rapidly, making it the dominant configuration under conditions of strong repulsion (details in SM).

Exotic charge density waves and superconductivity on the Kagome Lattice (4)

For both CBO and LCO, the instability occurs simultaneously at three symmetry related 𝐌𝐌\bf{M}bold_M points and the ground state can be determined by the analysis of Ginzburg-Landau free energy. In the CBO, the trilinear term favors the triple-𝐌𝐌\bf{M}bold_M phase with 2×2222\times 22 × 2 reconstructions and the corresponding sign of its coefficient determines the real-space pattern[29]: a negative sign favors the trihexagonal pattern and a positive sign favors the Star of David pattern. The real-space trihexagonal configuration involving NN and NNN bonds is displayed in Fig.3 (b), where the thick (thin) bond represents a strong (weak) hopping. With typical order parameters, the corresponding unfolded band structure is shown in Fig.4 (a) and the Fermi surface is fully gapped with a maximum gap occurring around the VHSs. For the LCO, the trilinear term vanishes due the time-reversal symmetry and the free energy up to quartic terms reads,

FLCO=aΨ2+bΨ4+c(ψ12ψ22+ψ22ψ32+ψ32ψ12),subscript𝐹LCO𝑎superscriptΨ2𝑏superscriptΨ4𝑐subscriptsuperscript𝜓21subscriptsuperscript𝜓22subscriptsuperscript𝜓22subscriptsuperscript𝜓23subscriptsuperscript𝜓23subscriptsuperscript𝜓21\displaystyle F_{\text{LCO}}=a\Psi^{2}+b\Psi^{4}+c(\psi^{2}_{1}\psi^{2}_{2}+%\psi^{2}_{2}\psi^{2}_{3}+\psi^{2}_{3}\psi^{2}_{1}),italic_F start_POSTSUBSCRIPT LCO end_POSTSUBSCRIPT = italic_a roman_Ψ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b roman_Ψ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + italic_c ( italic_ψ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_ψ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + italic_ψ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ,(25)

where ψisubscript𝜓𝑖\psi_{i}italic_ψ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is the order parameter of LCO with the vector MisubscriptM𝑖\text{M}_{i}M start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and Ψ2=iψi2superscriptΨ2subscript𝑖subscriptsuperscript𝜓2𝑖\Psi^{2}=\sum_{i}\psi^{2}_{i}roman_Ψ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. The quadratic coefficient is a=a0(TTc)𝑎subscript𝑎0𝑇subscript𝑇𝑐a=a_{0}(T-T_{c})italic_a = italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_T - italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ) with a0>0subscript𝑎00a_{0}>0italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > 0. The coefficient of the coupling term determines the ground state. A large positive c𝑐citalic_c usually favors the single-𝐌𝐌\bf{M}bold_M phase with 1×2121\times 21 × 2 reconstructions but a negative c𝑐citalic_c favors the triple-𝐌𝐌\bf{M}bold_M phase with 2×2222\times 22 × 2 reconstructions. Fig.3 (c) illustrates the real-space pattern of triple-𝐌𝐌\bf{M}bold_M 2×2222\times 22 × 2 LCO with the six-fold rotational symmetry, where the arrows denote the direction of the current pattern emerging in both NN and NNN bonds.Within this phase, the time-reversal symmetry is broken and the occupied band features a nontrivial Chern number. The unfolded band structure is displayed in Fig.4 (b), and the gap opening is anisotropic: the gap along ΓΓ\Gammaroman_Γ-K almost vanishes but reaches the maximum at VHSs. Distinct from the CBO, there is an additional state located at the Fermi level around VHSs. These lead to finite spectral weight at the Fermi energy along the ΓΓ\Gammaroman_Γ-K line and around M, as observed from the Fermi surface shown in the inset of Fig.4 (b). For the two-fold sublattice density modulation order, the free energy reads,

FCDW=a(ρ12+ρ22)+c(ρ+3+ρ3),subscript𝐹CDWsuperscript𝑎subscriptsuperscript𝜌21subscriptsuperscript𝜌22superscript𝑐subscriptsuperscript𝜌3subscriptsuperscript𝜌3\displaystyle F_{\text{CDW}}=a^{\prime}(\rho^{2}_{1}+\rho^{2}_{2})+c^{\prime}(%\rho^{3}_{+}+\rho^{3}_{-}),italic_F start_POSTSUBSCRIPT CDW end_POSTSUBSCRIPT = italic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_ρ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT + italic_ρ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - end_POSTSUBSCRIPT ) ,(26)

where ρ1,2subscript𝜌12\rho_{1,2}italic_ρ start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT are the two-fold order parameters and ρ±=ρ1±iρ2subscript𝜌plus-or-minusplus-or-minussubscript𝜌1𝑖subscript𝜌2\rho_{\pm}=\rho_{1}\pm i\rho_{2}italic_ρ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ± italic_i italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Assuming (ρ1,ρ2)=ρ(sin2θ,cos2θ)subscript𝜌1subscript𝜌2𝜌𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜃(\rho_{1},\rho_{2})=\rho(sin2\theta,cos2\theta)( italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = italic_ρ ( italic_s italic_i italic_n 2 italic_θ , italic_c italic_o italic_s 2 italic_θ ), the cubic term can be written as ρ3cos(6θ)superscript𝜌3𝑐𝑜𝑠6𝜃\rho^{3}cos(6\theta)italic_ρ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_c italic_o italic_s ( 6 italic_θ ), which is minimized by 2θ=2nπ/32𝜃2𝑛𝜋32\theta=2n\pi/32 italic_θ = 2 italic_n italic_π / 3 for c<0superscript𝑐0c^{\prime}<0italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT < 0 and 2θ=(2n+1)π/32𝜃2𝑛1𝜋32\theta=(2n+1)\pi/32 italic_θ = ( 2 italic_n + 1 ) italic_π / 3 for c>0superscript𝑐0c^{\prime}>0italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT > 0. The resulting order will break the six-fold rotational symmetry and thus is nematic. The order mainly involves charge density modulations within the unit cell and a representative nematic real-space configuration is shown in Fig.3 (d), where the large red spheres denote larger occupation and the red sublattice related bonds have stronger hopping amplitude. As shown in Fig.4 (c), this nSDM order will not introduce any band fold and gap opening around the Fermi level but introduce anisotropic energy shifts for the VHSs.

Exotic charge density waves and superconductivity on the Kagome Lattice (5)

IV Superconductivity mediated by onsite and bond charge density fluctuations

Exotic charge density waves and superconductivity on the Kagome Lattice (6)

When the Fermi level moves away from VHSs, the Fermi surface nesting weakens, leading to the suppression of both onsite and bond charge orders. However, these charge fluctuations can promote particle-particle instabilities, i.e. superconductivity. In this section, we explore the induced superconducting pairing when these particle-hole orders become unstable. Based on the Feynman diagrams in Fig.5(a) and (b), the onsite charge fluctuation (ΩΩ\Omegaroman_Ω) peaking at q=0q0{\textbf{q}}=0q = 0 dominantly contributes to the forward Cooper pair scattering. While, the bond charge fluctuation (Π/ΞΠΞ\Pi/\Xiroman_Π / roman_Ξ) peaking at 𝐌𝐌\mathbf{M}bold_M points contributes to the Cooper pair scattering with a large momentum transfer. The effective pairing interaction vertex Γ(𝒌,𝒌)Γ𝒌superscript𝒌\Gamma\left(\bm{k},\bm{k}^{\prime}\right)roman_Γ ( bold_italic_k , bold_italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) can be expressed as the onsite and bond charge fluctuations in the RPA approximation (details in SM). We tune the chemical potential slightly away from VH filling and the corresponding Fermi surface is shown in the inset of Fig.5(f), where there are two representative points P1subscriptP1\text{P}_{1}P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and P2subscriptP2\text{P}_{2}P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. We plot the effective interaction from RPA bubbles ΓBsubscriptΓB\Gamma_{\text{B}}roman_Γ start_POSTSUBSCRIPT B end_POSTSUBSCRIPT (ΩΩ\Omegaroman_Ω) and ladders ΓLsubscriptΓL\Gamma_{\text{L}}roman_Γ start_POSTSUBSCRIPT L end_POSTSUBSCRIPT (Π/ΞΠΞ\Pi/\Xiroman_Π / roman_Ξ) with different inter-site Coulomb interactions in Fig.5 (c)-(f), respectively. When one momentum is fixed at the point P1subscriptP1\text{P}_{1}P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, whose eigenvector is dominantly contributed by one sublattice, the effective interaction ΓB(P1,𝒌)subscriptΓBsubscriptP1𝒌\Gamma_{\text{B}}(\text{P}_{1},\bm{k})roman_Γ start_POSTSUBSCRIPT B end_POSTSUBSCRIPT ( P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , bold_italic_k ) is weak and nonzero only when 𝒌𝒌\bm{k}bold_italic_k is close to ±P1plus-or-minussubscriptP1\pm\text{P}_{1}± P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT due to the sublattice texture on the Fermi surface[44]. In contrast, the effective interaction ΓL(P1,𝒌)subscriptΓLsubscriptP1𝒌\Gamma_{\text{L}}(\text{P}_{1},\bm{k})roman_Γ start_POSTSUBSCRIPT L end_POSTSUBSCRIPT ( P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , bold_italic_k ) is substantial and exhibits sharp peaks when 𝒌𝒌\bm{k}bold_italic_k is in proximity to the other two VHSs. Moreover, the effective interactions display opposite signs in two cases where VNNsubscript𝑉NNV_{\text{NN}}italic_V start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT and VNNNsubscript𝑉NNNV_{\text{NNN}}italic_V start_POSTSUBSCRIPT NNN end_POSTSUBSCRIPT are dominant. The Cooper pair scattering between different VHSs can be exclusively mediated by the bond fluctuation ΞΞ\Xiroman_Ξ. The NN and NNN ΞΞ\Xiroman_Ξ at the nesting vector features the opposite sign and thus real and imaginary bond fluctuations generate the opposite effective interactions (details in SM), featuring distinct pairing states. When one momentum is fixed at the point P2subscriptP2\text{P}_{2}P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, whose eigenvector is attributed to a mixture of two sublattices, the effective interaction ΓB(P2,𝒌)subscriptΓBsubscriptP2𝒌\Gamma_{\text{B}}(\text{P}_{2},\bm{k})roman_Γ start_POSTSUBSCRIPT B end_POSTSUBSCRIPT ( P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , bold_italic_k ) is large and peaks at 𝒌=±P2𝒌plus-or-minussubscriptP2\bm{k}=\pm\text{P}_{2}bold_italic_k = ± P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Due to its anti-symmetric nature, it turns repulsive around 𝒌=P2𝒌subscriptP2\bm{k}=-\text{P}_{2}bold_italic_k = - P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT (θ=π𝜃𝜋\theta=\piitalic_θ = italic_π), as indicated from Fig.5 (d). While, the effective interaction ΓL(P2,𝒌)subscriptΓLsubscriptP2𝒌\Gamma_{\text{L}}(\text{P}_{2},\bm{k})roman_Γ start_POSTSUBSCRIPT L end_POSTSUBSCRIPT ( P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , bold_italic_k ) mainly mediated by the bond fluctuation ΠΠ\Piroman_Π is also significant around 𝒌=±P2𝒌plus-or-minussubscriptP2\bm{k}=\pm\text{P}_{2}bold_italic_k = ± P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and becomes attractive around 𝒌=P2𝒌subscriptP2\bm{k}=-\text{P}_{2}bold_italic_k = - P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT but drops to zero when the momentum transfer is large, as shown in Fig.5 (f). Intriguingly, the total effectively interaction ΓT(P2,𝒌)=ΓB(P2,𝒌)+ΓL(P2,𝒌)subscriptΓTsubscriptP2𝒌subscriptΓBsubscriptP2𝒌subscriptΓLsubscriptP2𝒌\Gamma_{\text{T}}(\text{P}_{2},\bm{k})=\Gamma_{\text{B}}(\text{P}_{2},\bm{k})+%\Gamma_{\text{L}}(\text{P}_{2},\bm{k})roman_Γ start_POSTSUBSCRIPT T end_POSTSUBSCRIPT ( P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , bold_italic_k ) = roman_Γ start_POSTSUBSCRIPT B end_POSTSUBSCRIPT ( P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , bold_italic_k ) + roman_Γ start_POSTSUBSCRIPT L end_POSTSUBSCRIPT ( P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , bold_italic_k ) for 𝒌𝒌\bm{k}bold_italic_k around P2subscriptP2-\text{P}_{2}- P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is attractive with a dominant VNNsubscript𝑉NNV_{\text{NN}}italic_V start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT but repulsive with a dominant VNNNsubscript𝑉NNNV_{\text{NNN}}italic_V start_POSTSUBSCRIPT NNN end_POSTSUBSCRIPT, which determines the pairing gap functions.

Near the transition temperature, the gap function can be obtained by solving the linearized gap equation,

FS3d𝐤2(2π)2|v𝐤|Vt(𝐤,𝐤)Δi(𝐤)=λiΔi(𝐤),subscriptFS3𝑑superscript𝐤2superscript2𝜋2subscript𝑣superscript𝐤superscript𝑉t𝐤superscript𝐤subscriptΔ𝑖superscript𝐤subscript𝜆𝑖subscriptΔ𝑖𝐤-\int_{\rm FS}\frac{\sqrt{3}d{\bf k^{\prime}}}{2(2\pi)^{2}|v_{\bf k^{\prime}}|%}V^{\rm t}\left(\mathbf{k},\mathbf{k}^{\prime}\right)\Delta_{i}(\mathbf{k}^{%\prime})=\lambda_{i}\Delta_{i}(\mathbf{k}),- ∫ start_POSTSUBSCRIPT roman_FS end_POSTSUBSCRIPT divide start_ARG square-root start_ARG 3 end_ARG italic_d bold_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG 2 ( 2 italic_π ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_v start_POSTSUBSCRIPT bold_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT | end_ARG italic_V start_POSTSUPERSCRIPT roman_t end_POSTSUPERSCRIPT ( bold_k , bold_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) roman_Δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( bold_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( bold_k ) ,(27)

where vF(k)subscript𝑣𝐹kv_{F}(\textbf{k})italic_v start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ( k ) is the Fermi velocity at the momentum 𝐤𝐤{\mathbf{k}}bold_k on the Fermi surface (FS). λisubscript𝜆𝑖\lambda_{i}italic_λ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT denotes the pairing strength for the gap function Δi(k)subscriptΔ𝑖k\Delta_{i}(\textbf{k})roman_Δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( k ) from the pairing interaction vertex in the triplet (t) channel, with Vt(𝒌,𝒌)=12[ΓT(𝒌,𝒌)ΓT(𝒌,𝒌)]superscript𝑉t𝒌superscript𝒌12delimited-[]subscriptΓT𝒌superscript𝒌subscriptΓT𝒌superscript𝒌V^{\text{t}}(\bm{k},\bm{k}^{\prime})=\frac{1}{2}[\Gamma_{\text{T}}(\bm{k},\bm{%k}^{\prime})-\Gamma_{\text{T}}(\bm{k},-\bm{k}^{\prime})]italic_V start_POSTSUPERSCRIPT t end_POSTSUPERSCRIPT ( bold_italic_k , bold_italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ roman_Γ start_POSTSUBSCRIPT T end_POSTSUBSCRIPT ( bold_italic_k , bold_italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - roman_Γ start_POSTSUBSCRIPT T end_POSTSUBSCRIPT ( bold_italic_k , - bold_italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] (for details see SM). We study the dominant pairing states based on the above equation and Fig.6 (a) displays the leading pairing eigenvalues with a variation of VNNNsubscript𝑉NNNV_{\text{NNN}}italic_V start_POSTSUBSCRIPT NNN end_POSTSUBSCRIPT and a fixed VNN=0.2subscript𝑉NN0.2V_{\text{NN}}=0.2italic_V start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT = 0.2. The p𝑝pitalic_p-wave state is favored for VNNN<0.2subscript𝑉NNN0.2V_{\text{NNN}}<0.2italic_V start_POSTSUBSCRIPT NNN end_POSTSUBSCRIPT < 0.2. For an intermediate VNNNsubscript𝑉NNNV_{\text{NNN}}italic_V start_POSTSUBSCRIPT NNN end_POSTSUBSCRIPT, the fx33xy2subscript𝑓superscript𝑥33𝑥superscript𝑦2f_{x^{3}-3xy^{2}}italic_f start_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 3 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT-wave pairing is dominant. Increasing VNNNsubscript𝑉NNNV_{\text{NNN}}italic_V start_POSTSUBSCRIPT NNN end_POSTSUBSCRIPT further, the eigenvalue of the fy33yx2subscript𝑓superscript𝑦33𝑦superscript𝑥2f_{y^{3}-3yx^{2}}italic_f start_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 3 italic_y italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT-wave pairing increases rapidly and becomes the leading around VNNN=1.0subscript𝑉NNN1.0V_{\text{NNN}}=1.0italic_V start_POSTSUBSCRIPT NNN end_POSTSUBSCRIPT = 1.0. The comprehensive VNNVNNNsubscript𝑉NNsubscript𝑉NNNV_{\text{NN}}-V_{\text{NNN}}italic_V start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT - italic_V start_POSTSUBSCRIPT NNN end_POSTSUBSCRIPT phase diagram is illustrated in Fig.6 (c). Here, the two dominant p𝑝pitalic_p-wave and fx33xy2subscript𝑓superscript𝑥33𝑥superscript𝑦2f_{x^{3}-3xy^{2}}italic_f start_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 3 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT-wave pairings lie adjacent to CBO and LCO/nSDM, implying that their emergence are facilitated by the corresponding charge fluctuations. The corresponding gap functions are displayed in the Fig.6 (c)-(e), where the f𝑓fitalic_f-wave gaps feature a sign change with a six-fold rotation and px,ysubscript𝑝𝑥𝑦p_{x,y}italic_p start_POSTSUBSCRIPT italic_x , italic_y end_POSTSUBSCRIPT-wave state is two-fold degenerate. The px,ysubscript𝑝𝑥𝑦p_{x,y}italic_p start_POSTSUBSCRIPT italic_x , italic_y end_POSTSUBSCRIPT-wave pairing tends to form a px+ipysubscript𝑝𝑥𝑖subscript𝑝𝑦p_{x}+ip_{y}italic_p start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + italic_i italic_p start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT state to maximize the superconducting condensation energy. The fy33yx2subscript𝑓superscript𝑦33𝑦superscript𝑥2f_{y^{3}-3yx^{2}}italic_f start_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 3 italic_y italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT-wave state existing in a narrow region is extremely close to LCO, indicating that it is dominantly promoted by loop current fluctuations. The superconducting gaps around saddle points connected by the nesting vectors have same sign, which is dictated by the attractive pairing interaction between different VHSs. The fx33xy2subscript𝑓superscript𝑥33𝑥superscript𝑦2f_{x^{3}-3xy^{2}}italic_f start_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 3 italic_x italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT-wave pairing is generated by both LCO and nSDM fluctuations and the sign-reversed gaps between two opposite edges are attributed to the repulsive nature of ΓT(P2,𝒌)subscriptΓTsubscriptP2𝒌\Gamma_{\text{T}}(\text{P}_{2},\bm{k})roman_Γ start_POSTSUBSCRIPT T end_POSTSUBSCRIPT ( P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , bold_italic_k ) around 𝒌=P2𝒌subscriptP2\bm{k}=-\text{P}_{2}bold_italic_k = - P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. The p𝑝pitalic_p-wave pairing is driven by the CBO fluctuations and the attractive total interaction ΓT(P2,𝒌)subscriptΓTsubscriptP2𝒌\Gamma_{\text{T}}(\text{P}_{2},\bm{k})roman_Γ start_POSTSUBSCRIPT T end_POSTSUBSCRIPT ( P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , bold_italic_k ) around 𝒌=P2𝒌subscriptP2\bm{k}=-\text{P}_{2}bold_italic_k = - P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ensures that the gaps maintains the same sign on two opposite edges. In addition, its odd-parity nature will introduce line nodes along ΓΓ\Gammaroman_Γ-K line.

V Discussions and conclusions

At the p-type VH filling, the associated sublattice texture on the Fermi surface plays pivotal role in determining the correlated states in the kagome lattice. The real-space 2×2222\times 22 × 2 modulated onsite charge order is significantly suppressed and the bond charge order gets promoted due to the sublattice interference. Owing to the unique geometry of the kagome lattice, the NN and NNN bonds are characterized by strong intrinsic real and imaginary bond fluctuations, respectively. The loop current state can naturally emerge when there is a strong NNN repulsion. Our work demonstrates that the kagome lattice is an ideal platform to realize such loop current state. The obtained 2×2222\times 22 × 2 loop current order is in the anti-symmetric channel and breaks the translational symmetry derived from the Fermi surface nesting. It is distinct from the loop current order in the symmetric channel with 𝒒=0𝒒0\bm{q}=0bold_italic_q = 0 at 1/3 or 2/3 fillings, where quadratic band touching is believed to be essential[45, 46, 47].

In the nonmagnetic kagome materials, there is an additional degree of freedom, i.e. electron’s spin. In a spinful model, the onsite Coulomb repulsion becomes relevant and the onsite charge fluctuation gets enhanced as the charge density doubles. A strong NNN repulsion will further enhance the onsite CDW, rendering the LCO subleading. However, the third NN repulsion acting on the same subalttice can suppress the CDW and LCO may still be stabilized in certain parameter space. A strong onsite Coulomb interaction can enhance the spin bond order and complicates the phase diagram, which deserves future investigation.

We discuss the potential experimental implications of the correlated states in our calculations. The obtained 2×2222\times 22 × 2 LCO state can be relevant in two types of kagome materials. In AV3Sb5, the CDW exhibits an in-plane 2×2222\times 22 × 2 reconstruction and time-reversal symmetry breaking. There are both p-type and m-type VHSs in the vicinity of the Fermi level and the multi-orbital nature and strong hybridization between V d orbitals and Sb p orbitals can enhance the inter-site repulsion in the kagome lattice[32, 33]. These are consistent with our setting in our model calculations. Moreover, the multiple types of VHSs may be helpful to stabilize LCO in the spinful case[48]. The CDW observed in AV3Sb5 may be attributed to the LCO and driven by inter-site Coulomb interactions. Another relevant kagome material is FeGe, which exhibits both antiferromagnetic and CDW orders. Each kagome layer is ferromagnetic and ferromagnetic splitting is large, resulting multiple spin-polarized VHSs in proximity to the Fermi level[17, 18]. This spin-polarized band is close to the adopted spinless kagome model here. The orbital magnetism associated with LCO can account for the change of magnetic moment upon the CDW transition in FeGe[17, 18]. The nematic SDM involving onsite and symmetric bond orders in our calculations can account for the nematicity inCsTi3Bi5 observed by the quasi-particle interference in STM measurements[49, 50]. Especially, the observed anisotropic symmetry-breaking feature in momentum space can be attributed to the nematic bond order.

In summary, our study demonstrates that the loop current state can be stabilized within the spinless kagome lattice, driven by the pronounced imaginary bond fluctuations on next-nearest-neighbor (NNN) bonds. The uncovered sublattice texture plays a pivotal role in the formation of bond charge orders, with the accompanying sublattice interference being deeply connected to the emergence of exotic correlated states. Our findings shed light on the unique character of the kagome lattice and propose a new mechanism for realizing exotic orders in kagome-based materials, such as loop current states.

VI Acknowledgments

R.F., S.Z., and X.W. are supported by the National Key R&D Program of China (Grants No. 2023YFA1407300 and 2022YFA1403800) and the National Natural Science Foundation of China (Grants No. 12374153, 12047503, and 11974362).J.Z. and J.P. are supported by the Ministry of Science and Technology (Grant No. 2022YFA1403901), the National Natural Science Foundation of China (Grant No. NSFC- 11888101, and the New Cornerstone Investigator Program. Z.W. is supported by U.S. Department of Energy, Basic Energy Sciences Grant No. DE-FG02-99ER45747 and the Cottrell SEED Award No. 27856 from Research Corporation for Science Advancement. R.T., M.D. and H.H acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Project-ID 258499086 - SFB 1170, and through the research unit QUAST, FOR5249, project ID 449872909, and through the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat Project-ID 390858490- EXC 2147. Numerical calculations in this work were performed on the HPC Cluster of ITP-CAS.

References

  • Leeetal. [2006]P.A.Lee, N.Nagaosa,andX.-G.Wen,Doping a mott insulator: Physics ofhigh-temperature superconductivity,Rev. Mod. Phys.78,17 (2006).
  • Varma [1997]C.M.Varma,Non-fermi-liquid states andpairing instability of a general model of copper oxide metals,Phys. Rev. B55,14554 (1997).
  • Varma [1999]C.M.Varma,Pseudogap phase and thequantum-critical point in copper-oxide metals,Phys. Rev. Lett.83,3538 (1999).
  • Bourgesetal. [2021]P.Bourges, D.Bounoua,andY.Sidis,Loop currents in quantum matter,Comptes Rendus. Physique22,7 (2021).
  • Croftetal. [2017]T.P.Croft, E.Blackburn,J.Kulda, R.Liang, D.A.Bonn, W.N.Hardy,andS.M.Hayden,No evidence for orbital loop currents in charge-orderedyba2cu3o6+xsubscriptyba2subscriptcu3subscripto6𝑥{\mathrm{yba}}_{2}{\mathrm{cu}}_{3}{\mathrm{o}}_{6+x}roman_yba start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_cu start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_o start_POSTSUBSCRIPT 6 + italic_x end_POSTSUBSCRIPT from polarizedneutron diffraction,Phys. Rev. B96,214504 (2017).
  • Zhuetal. [2013]L.Zhu, V.Aji,andC.M.Varma,Ordered loop current states in bilayer graphene,Phys. Rev. B87,035427 (2013).
  • Bultincketal. [2020]N.Bultinck, E.Khalaf,S.Liu, S.Chatterjee, A.Vishwanath,andM.P.Zaletel,Ground state and hidden symmetry of magic-angle grapheneat even integer filling,Phys. Rev. X10,031034 (2020).
  • Weberetal. [2009]C.Weber, A.Läuchli,F.Mila,andT.Giamarchi,Orbital currents in extended hubbard models ofhigh-Tcsubscript𝑇𝑐{T}_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT cuprate superconductors,Phys. Rev. Lett.102,017005 (2009).
  • GreiterandThomale [2007]M.GreiterandR.Thomale,No evidence forspontaneous orbital currents in numerical studies of three-band models forthe cuo planes of high temperature superconductors,Phys. Rev. Lett.99,027005 (2007).
  • ThomaleandGreiter [2008]R.ThomaleandM.Greiter,Numerical analysis ofthree-band models for cuo planes as candidates for a spontaneous t-violatingorbital current phase,Phys. Rev. B77,094511 (2008).
  • Weberetal. [2014]C.Weber, T.Giamarchi,andC.M.Varma,Phase diagram of a three-orbital modelfor high-Tcsubscript𝑇𝑐{T}_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT cuprate superconductors,Phys. Rev. Lett.112,117001 (2014).
  • Kungetal. [2014]Y.F.Kung, C.-C.Chen,B.Moritz, S.Johnston, R.Thomale,andT.P.Devereaux,Numerical exploration of spontaneous broken symmetries inmultiorbital hubbard models,Phys. Rev. B90,224507 (2014).
  • Ortizetal. [2019]B.R.Ortiz, L.C.Gomes,J.R.Morey, M.Winiarski, M.Bordelon, J.S.Mangum, I.W.H.Oswald, J.A.Rodriguez-Rivera, J.R.Neilson, S.D.Wilson, E.Ertekin, T.M.McQueen,andE.S.Toberer,Newkagome prototype materials: discovery ofkv3sb5,rbv3sb5subscriptkv3subscriptsb5subscriptrbv3subscriptsb5{\mathrm{kv}}_{3}{\mathrm{sb}}_{5},{\mathrm{rbv}}_{3}{\mathrm{sb}}_{5}roman_kv start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_sb start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , roman_rbv start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_sb start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT, andcsv3sb5subscriptcsv3subscriptsb5{\mathrm{csv}}_{3}{\mathrm{sb}}_{5}roman_csv start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_sb start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT,Phys. Rev. Materials3,094407 (2019).
  • Neupertetal. [2022]T.Neupert, M.M.Denner,J.-X.Yin, R.Thomale,andM.Z.Hasan,Charge order and superconductivity in kagome materials,Nature Physics18,137 (2022).
  • Jiangetal. [2021a]K.Jiang, T.Wu, J.-X.Yin, Z.Wang, M.Z.Hasan, S.D.Wilson, X.Chen,andJ.Hu,Kagomesuperconductors av3sb5 (a=k, rb, cs) (2021a).
  • Yinetal. [2022]J.-X.Yin, Y.-X.Jiang,X.Teng, M.S.Hossain, S.Mardanya, T.-R.Chang, Z.Ye, G.Xu, M.M.Denner, T.Neupert, B.Lienhard,H.-B.Deng, C.Setty, Q.Si, G.Chang, Z.Guguchia, B.Gao, N.Shumiya, Q.Zhang,T.A.Cochran, D.Multer, M.Yi, P.Dai,andM.Z.Hasan,Discovery ofcharge order and corresponding edge state in kagome magnet fege,Phys. Rev. Lett.129,166401 (2022).
  • Tengetal. [2022]X.Teng, L.Chen, F.Ye, E.Rosenberg, Z.Liu, J.-X.Yin, Y.-X.Jiang, J.S.Oh, M.Z.Hasan,K.J.Neubauer, B.Gao, Y.Xie, M.Hashimoto, D.Lu, C.Jozwiak, A.Bostwick,E.Rotenberg, R.J.Birgeneau, J.-H.Chu, M.Yi,andP.Dai,Discoveryof charge density wave in a kagome lattice antiferromagnet,Nature609,490 (2022).
  • Tengetal. [2023]X.Teng, J.S.Oh,H.Tan, L.Chen, J.Huang, B.Gao, J.-X.Yin, J.-H.Chu, M.Hashimoto,D.Lu, C.Jozwiak, A.Bostwick, E.Rotenberg, G.E.Granroth, B.Yan, R.J.Birgeneau,P.Dai,andM.Yi,Magnetism and charge density wave order in kagome fege,Nature Physics19,814 (2023).
  • Jiangetal. [2021b]Y.-X.Jiang, J.-X.Yin,M.M.Denner, N.Shumiya, B.R.Ortiz, G.Xu, Z.Guguchia, J.He, M.S.Hossain, X.Liu, J.Ruff, L.Kautzsch, S.S.Zhang, G.Chang, I.Belopolski, Q.Zhang, T.A.Cochran, D.Multer, M.Litskevich,Z.-J.Cheng, X.P.Yang, Z.Wang, R.Thomale, T.Neupert, S.D.Wilson,andM.Z.Hasan,Unconventionalchiral charge order in kagome superconductor kv3sb5,Nature Materials20,1353 (2021b).
  • Liangetal. [2021]Z.Liang, X.Hou, F.Zhang, W.Ma, P.Wu, Z.Zhang, F.Yu, J.-J.Ying, K.Jiang, L.Shan, Z.Wang,andX.-H.Chen,Three-dimensional chargedensity wave and surface-dependent vortex-core states in a kagomesuperconductor csv3sb5subscriptcsv3subscriptsb5{\mathrm{csv}}_{3}{\mathrm{sb}}_{5}roman_csv start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_sb start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT,Phys. Rev. X11,031026 (2021).
  • Mielkeetal. [2022]C.Mielke, D.Das,J.X.Yin, H.Liu, R.Gupta, Y.X.Jiang, M.Medarde, X.Wu, H.C.Lei, J.Chang, P.Dai, Q.Si, H.Miao, R.Thomale, T.Neupert, Y.Shi, R.Khasanov, M.Z.Hasan,H.Luetkens,andZ.Guguchia,Time-reversal symmetry-breaking charge order in akagome superconductor,Nature602,245 (2022).
  • Wuetal. [2021]Q.Wu, Z.X.Wang,Q.M.Liu, R.S.Li, S.X.Xu, Q.W.Yin, C.S.Gong, Z.J.Tu, H.C.Lei, T.Dong,andN.L.Wang,Revealing the immediate formation of two-fold rotationsymmetry in charge-density-wave state of Kagome superconductor CsV3Sb5by optical polarization rotation measurement,arXiv e-prints,arXiv:2110.11306 (2021),arXiv:2110.11306 [cond-mat.supr-con].
  • Guoetal. [2022]C.Guo, C.Putzke,S.Konyzheva, X.Huang, M.Gutierrez-Amigo, I.Errea, D.Chen, M.G.Vergniory, C.Felser, M.H.Fischer,T.Neupert,andP.J.W.Moll,Switchable chiral transport in charge-orderedkagome metal csv3sb5,Nature611,461 (2022).
  • Xuetal. [2022]Y.Xu, Z.Ni, Y.Liu, B.R.Ortiz, S.D.Wilson, B.Yan, L.Balents,andL.Wu,Universalthree-state nematicity and magneto-optical Kerr effect in the charge densitywaves in AV3Sb5 (A=Cs, Rb, K),arXiv e-prints,arXiv:2204.10116(2022),arXiv:2204.10116 [cond-mat.str-el] .
  • Xingetal. [2024]Y.Xing, S.Bae, E.Ritz, F.Yang, T.Birol, A.N.C.Salinas, B.R.Ortiz, S.D.Wilson, Z.Wang,R.M.Fernandes,andV.Madhavan,Optical manipulation of the charge density wave statein rbv3sb5 (2024),arXiv:2308.04128 [cond-mat.str-el].
  • Fengetal. [2021]X.Feng, K.Jiang,Z.Wang,andJ.Hu,Chiral flux phase in the kagome superconductor av3sb5,Science Bulletin66,1384 (2021).
  • Denneretal. [2021]M.M.Denner, R.Thomale,andT.Neupert,Analysis of charge order in the kagomemetal av3sb5𝑎subscriptv3subscriptsb5a{\mathrm{v}}_{3}{\mathrm{sb}}_{5}italic_a roman_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_sb start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT(a=K,Rb,Cs𝑎KRbCsa=\mathrm{K},\mathrm{Rb},\mathrm{Cs}italic_a = roman_K , roman_Rb , roman_Cs),Phys. Rev. Lett.127,217601 (2021).
  • LinandNandkishore [2021]Y.-P.LinandR.M.Nandkishore,Complex chargedensity waves at van hove singularity on hexagonal lattices: Haldane-modelphase diagram and potential realization in the kagome metalsaV3sb5𝑎subscript𝑉3subscriptsb5a{V}_{3}{\mathrm{sb}}_{5}italic_a italic_V start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_sb start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT (a𝑎aitalic_a=k, rb, cs),Phys. Rev. B104,045122 (2021).
  • Parketal. [2021]T.Park, M.Ye,andL.Balents,Electronic instabilities of kagome metals: Saddlepoints and landau theory,Phys. Rev. B104,035142 (2021).
  • ZhouandWang [2022]S.ZhouandZ.Wang,Chern fermi pocket, topological pairdensity wave, and charge-4e and charge-6e superconductivity in kagomésuperconductors,Nature Communications13,7288 (2022).
  • Saykinetal. [2023]D.R.Saykin, C.Farhang,E.D.Kountz, D.Chen, B.R.Ortiz, C.Shekhar, C.Felser, S.D.Wilson, R.Thomale, J.Xia,andA.Kapitulnik,High resolution polar kerr effect studies ofcsv3sb5subscriptcsv3subscriptsb5{\mathrm{csv}}_{3}{\mathrm{sb}}_{5}roman_csv start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_sb start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT: Tests for time-reversal symmetrybreaking below the charge-order transition,Phys. Rev. Lett.131,016901 (2023).
  • Huetal. [2022]Y.Hu, X.Wu, B.R.Ortiz, S.Ju, X.Han, J.Ma, N.C.Plumb,M.Radovic, R.Thomale, S.D.Wilson, A.P.Schnyder,andM.Shi,Rich nature of van hove singularities in kagome superconductorcsv3sb5,Nature Communications13,2220 (2022).
  • Kangetal. [2022]M.Kang, S.Fang, J.-K.Kim, B.R.Ortiz, S.H.Ryu, J.Kim, J.Yoo, G.Sangiovanni,D.DiSante, B.-G.Park, C.Jozwiak, A.Bostwick, E.Rotenberg, E.Kaxiras, S.D.Wilson, J.-H.Park,andR.Comin,Twofoldvan hove singularity and origin of charge order in topological kagomesuperconductor csv3sb5,Nature Physics18,301 (2022).
  • KieselandThomale [2012]M.L.KieselandR.Thomale,Sublattice interferencein the kagome hubbard model,Phys. Rev. B86,121105 (2012).
  • Wuetal. [2021]X.Wu, T.Schwemmer,T.Müller, A.Consiglio, G.Sangiovanni, D.DiSante, Y.Iqbal, W.Hanke, A.P.Schnyder, M.M.Denner, M.H.Fischer, T.Neupert,andR.Thomale,Nature of unconventionalpairing in the kagome superconductors av3sb5𝑎subscriptv3subscriptsb5a{\mathrm{v}}_{3}{\mathrm{sb}}_{5}italic_a roman_v start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_sb start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT(a=K,Rb,Cs𝑎KRbCsa=\mathrm{K},\mathrm{Rb},\mathrm{Cs}italic_a = roman_K , roman_Rb , roman_Cs),Phys. Rev. Lett.127,177001 (2021).
  • Wangetal. [2013]W.-S.Wang, Z.-Z.Li,Y.-Y.Xiang,andQ.-H.Wang,Competing electronic orders on kagome lattices atvan hove filling,Phys. Rev. B87,115135 (2013).
  • Kieseletal. [2013]M.L.Kiesel, C.Platt,andR.Thomale,Unconventional fermi surface instabilities in thekagome hubbard model,Phys. Rev. Lett.110,126405 (2013).
  • Liuetal. [2024]Y.-Q.Liu, Y.-B.Liu,W.-S.Wang, D.Wang,andQ.-H.Wang,Electronic orders on the kagome lattice at the lower van hovefilling,Phys. Rev. B109,075127 (2024).
  • Profeetal. [2024]J.B.Profe, L.Klebl,F.Grandi, H.Hohmann, M.Dürrnagel, T.Schwemmer, R.Thomale,andD.M.Kennes,The kagome Hubbard model from a functionalrenormalization group perspective,arXiv e-prints,arXiv:2402.11916 (2024),arXiv:2402.11916 [cond-mat.str-el] .
  • Dongetal. [2023]J.-W.Dong, Z.Wang,andS.Zhou,Loop-current charge density wave driven bylong-range coulomb repulsion on the kagomé lattice,Phys. Rev. B107,045127 (2023).
  • Tazaietal. [2023]R.Tazai, Y.Yamakawa,andH.Kontani,Charge-loop current order and z3nematicity mediated by bond order fluctuations in kagome metals,Nature Communications14,7845 (2023).
  • Oetal. [2021]S.-J.O, Y.-H.Kim, O.-G.Pak, K.-H.Jong, C.-W.Ri,andH.-C.Pak,Competing electronic orders on a heavily doped honeycomb latticewith enhanced exchange coupling,Phys. Rev. B103,235150 (2021).
  • Gneistetal. [2022]N.Gneist, D.Kiese,R.Henkel, R.Thomale, L.Classen,andM.M.Scherer,Functional renormalization of spinless triangular-latticefermions: N-patch vs. truncated-unity scheme,The European Physical Journal B95,157 (2022).
  • Wuetal. [2024]X.Wu, D.Chakraborty,A.P.Schnyder,andA.Greco,Crossover between electron-electron andelectron-phonon mediated pairing on the kagome lattice,Phys. Rev. B109,014517 (2024).
  • Sunetal. [2009]K.Sun, H.Yao, E.Fradkin,andS.A.Kivelson,Topological insulators and nematic phases from spontaneoussymmetry breaking in 2d fermi systems with a quadratic band crossing,Phys. Rev. Lett.103,046811 (2009).
  • Wenetal. [2010]J.Wen, A.Rüegg,C.-C.J.Wang,andG.A.Fiete,Interaction-driven topological insulators on thekagome and the decorated honeycomb lattices,Phys. Rev. B82,075125 (2010).
  • Zhuetal. [2016]W.Zhu, S.-S.Gong,T.-S.Zeng, L.Fu,andD.N.Sheng,Interaction-driven spontaneous quantum hall effect on a kagomelattice,Phys. Rev. Lett.117,096402 (2016).
  • Lietal. [2023]H.Li, Y.B.Kim,andH.-Y.Kee,Intertwined van-Hove Singularities asa Mechanism for Loop Current Order in Kagome Metals,arXiv e-prints,arXiv:2309.03288 (2023),arXiv:2309.03288 [cond-mat.str-el] .
  • Yangetal. [2022]H.Yang, Y.Ye,Z.Zhao, J.Liu, X.-W.Yi, Y.Zhang, J.Shi, J.-Y.You, Z.Huang, B.Wang,J.Wang, H.Guo, X.Lin, C.Shen, W.Zhou, H.Chen, X.Dong, G.Su, Z.Wang,andH.-J.Gao,Superconductivity andorbital-selective nematic order in a new titanium-based kagome metalCsTi3Bi5,arXiv e-prints,arXiv:2211.12264 (2022),arXiv:2211.12264 [cond-mat.supr-con].
  • Lietal. [2023]H.Li, S.Cheng, B.R.Ortiz, H.Tan, D.Werhahn, K.Zeng, D.Johrendt, B.Yan,Z.Wang, S.D.Wilson,andI.Zeljkovic,Electronic nematicity without charge density waves in titanium-basedkagome metal,Nature Physics19,1591 (2023).
Exotic charge density waves and superconductivity on the Kagome Lattice (2024)
Top Articles
Latest Posts
Article information

Author: Zonia Mosciski DO

Last Updated:

Views: 5807

Rating: 4 / 5 (51 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Zonia Mosciski DO

Birthday: 1996-05-16

Address: Suite 228 919 Deana Ford, Lake Meridithberg, NE 60017-4257

Phone: +2613987384138

Job: Chief Retail Officer

Hobby: Tai chi, Dowsing, Poi, Letterboxing, Watching movies, Video gaming, Singing

Introduction: My name is Zonia Mosciski DO, I am a enchanting, joyous, lovely, successful, hilarious, tender, outstanding person who loves writing and wants to share my knowledge and understanding with you.