Widespread CO2 and CO ices in the trans-Neptunian population revealed by JWST/DiSCo-TNOs (2024)

References

  1. Schaller, E. L. Volatile loss and retention on Kuiper belt objects. Astrophys. J. Lett. 659, L61–L64 (2007).

    Article ADS Google Scholar

  2. Johnson, R. E., Oza, A., Young, L. A., Volkov, A. N. & Schmidt, C. Volatile loss and classification of Kuiper belt objects. Astrophys. J. 809, 43 (2015).

    Article ADS Google Scholar

  3. Young, L. A., Braga-Ribas, F. & Johnson, R. E. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 127–151 (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-816490-7.00006-0

  4. Fray, N. & Schmitt, B. Sublimation of ices of astrophysical interest: a bibliographic review. Planet. Space Sci. 57, 2053–2080 (2009).

    Article ADS Google Scholar

  5. Strazzulla, G. & Johnson, R. E. in Comets in the Post-Halley Era Vol. 167 (eds Newburn, R. L. et al.) 243 (Springer, 1991); https://doi.org/10.1007/978-94-011-3378-4_11

  6. Brunetto, R., Barucci, M. A., Dotto, E. & Strazzulla, G. Ion irradiation of frozen methanol, methane, and benzene: linking to the colors of centaurs and trans-Neptunian objects. Astrophys. J. 644, 646–650 (2006).

    Article ADS Google Scholar

  7. de Bergh, C., Schmitt, B., Moroz, L. V., Quirico, E. & Cruikshank, D. P. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 483–506 (Univ. of Arizona Press, 2008).

  8. Quirico, E. et al. On a radiolytic origin of red organics at the surface of the Arrokoth trans-Neptunian object. Icarus 394, 115396 (2023).

    Article Google Scholar

  9. Barkume, K. M., Brown, M. E. & Schaller, E. L. Near-infrared spectra of centaurs and Kuiper belt objects. Astron. J. 135, 55–67 (2008).

    Article ADS Google Scholar

  10. Guilbert, A. et al. ESO-large program on TNOs: near-infrared spectroscopy with SINFONI. Icarus 201, 272–283 (2009).

    Article ADS Google Scholar

  11. Barucci, M. A. et al. New insights on ices in centaur and transneptunian populations. Icarus 214, 297–307 (2011).

    Article ADS Google Scholar

  12. Cruikshank, D. P. et al. The composition of centaur 5145 Pholus. Icarus 135, 389–407 (1998).

    Article ADS Google Scholar

  13. Barucci, M. A., Merlin, F., Dotto, E., Doressoundiram, A. & de Bergh, C. TNO surface ices. Observations of the TNO 55638 (2002 VE95) and analysis of the population’s spectral properties. Astron. Astrophys. 455, 725–730 (2006).

    Article ADS Google Scholar

  14. Stern, S. A. et al. Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object. Science 364, aaw9771 (2019).

    Article ADS Google Scholar

  15. Cook, J. C., Desch, S. J., Roush, T. L., Trujillo, C. A. & Geballe, T. R. Near-infrared spectroscopy of Charon: possible evidence for cryovolcanism on Kuiper belt objects. Astrophys. J. 663, 1406–1419 (2007).

    Article ADS Google Scholar

  16. Cook, J. C. et al. Composition of Pluto’s small satellites: analysis of New Horizons spectral images. Icarus 315, 30–45 (2018).

    Article ADS Google Scholar

  17. Clark, R. N., Carlson, R., Grundy, W. & Noll, K. Observed Ices in the Solar System 3–46 (Springer, 2013); https://doi.org/10.1007/978-1-4614-3076-6_1

  18. Rubanenko, L., Mazarico, E., Neumann, G. A. & Paige, D. A. Ice in micro cold traps on Mercury: implications for age and origin. J. Geophys. Res.: Planets 123, 2178–2191 (2018).

    Article ADS Google Scholar

  19. Schorghofer, N., Williams, J.-P., Martinez-Camacho, J., Paige, D. A. & Siegler, M. A. Carbon dioxide cold traps on the Moon. Geophys. Res. Lett. 48, e95533 (2021).

    Article ADS Google Scholar

  20. Phillips, R. J. et al. Massive CO2 ice deposits sequestered in the South Polar layered deposits of Mars. Science 332, 838 (2011).

    Article ADS Google Scholar

  21. McCord, T. B. et al. Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. J. Geophys. Res. 103, 8603–8626 (1998).

    Article ADS Google Scholar

  22. Grundy, W. M. et al. Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations. Icarus 184, 543–555 (2006).

    Article ADS Google Scholar

  23. Cruikshank, D. P. et al. Carbon dioxide on the satellites of Saturn: results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale. Icarus 206, 561–572 (2010).

    Article ADS Google Scholar

  24. Pinilla-Alonso, N., Roush, T. L., Marzo, G. A., Cruikshank, D. P. & Dalle Ore, C. M. Iapetus surface variability revealed from statistical clustering of a VIMS mosaic: the distribution of CO2. Icarus 215, 75–82 (2011).

    Article ADS Google Scholar

  25. Cartwright, R. J., Emery, J. P., Rivkin, A. S., Trilling, D. E. & Pinilla-Alonso, N. Distribution of CO2 ice on the large moons of Uranus and evidence for compositional stratification of their near-surfaces. Icarus 257, 428–456 (2015).

    Article ADS Google Scholar

  26. Harrington Pinto, O., Womack, M., Fernandez, Y. & Bauer, J. A survey of CO, CO2, and H2O in comets and centaurs. Planet. Sci. J. 3, 247 (2022).

    Article Google Scholar

  27. Cruikshank, D. P. et al. Ices on the surface of Triton. Science 261, 742–745 (1993).

    Article ADS Google Scholar

  28. Grundy, W. M. & Young, L. A. Near-infrared spectral monitoring of Triton with IRTF/SpeX I: establishing a baseline for rotational variability. Icarus 172, 455–465 (2004).

    Article ADS Google Scholar

  29. Agnor, C. B. & Hamilton, D. P. Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 441, 192–194 (2006).

    Article ADS Google Scholar

  30. Pinilla-Alonso, N. et al. A DiSCo-TNOs portrait of the primordial Solar System. Nat. Astron.

  31. Böker, T. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. III. Integral-field spectroscopy. Astron. Astrophys. 661, A82 (2022).

    Article Google Scholar

  32. Lisse, C. M. et al. A predicted dearth of majority hypervolatile ices in Oort cloud comets. Planet. Sci. J. 3, 112 (2022).

    Article Google Scholar

  33. Licandro, J. et al. Surface composition of centaurs: insights into the thermal evolution of TNOs. Preprint at www.researchsquare.com/article/rs-3606680/v1 (2023).

  34. Gkotsinas, A., Guilbert-Lepoutre, A., Raymond, S. N. & Nesvorny, D. Thermal processing of Jupiter-family comets during their chaotic orbital evolution. Astrophys. J. 928, 43 (2022).

    Article ADS Google Scholar

  35. Brown, M. E. The compositions of Kuiper belt objects. Annu. Rev. Earth Planet. Sci. 40, 467–494 (2012).

    Article ADS Google Scholar

  36. Brown, M. E. & Fraser, W. C. The state of CO and CO2 ices in the Kuiper belt as seen by JWST. Planet. Sci. J. 4, 130 (2023).

    Article Google Scholar

  37. Hapke, B. Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, 2012); https://doi.org/10.1017/CBO9781139025683

  38. Choy, T. C. Effective Medium Theory: Principles and Applications (Oxford Univ. Press, 2015); https://doi.org/10.1093/acprof:oso/9780198705093.001.0001

  39. Brown, M. E., Schaller, E. L. & Fraser, W. C. A hypothesis for the color diversity of the Kuiper belt. Astrophys. J. Lett. 739, L60 (2011).

    Article ADS Google Scholar

  40. Peixinho, N., Delsanti, A., Guilbert-Lepoutre, A., Gafeira, R. & Lacerda, P. The bimodal colors of centaurs and small Kuiper belt objects. Astron. Astrophys. 546, A86 (2012).

    Article ADS Google Scholar

  41. Peixinho, N., Delsanti, A. & Doressoundiram, A. Reanalyzing the visible colors of centaurs and KBOs: what is there and what we might be missing. Astron. Astrophys. 577, A35 (2015).

    Article ADS Google Scholar

  42. Tegler, S. C., Romanishin, W., Consolmagno, G. J. & J, S. Two color populations of Kuiper belt and centaur objects and the smaller orbital inclinations of red centaur objects. Astron. J. 152, 210 (2016).

    Article ADS Google Scholar

  43. Marsset, M. et al. Col-OSSOS: color and inclination are correlated throughout the Kuiper belt. Astron. J. 157, 94 (2019).

    Article ADS Google Scholar

  44. Fraser, W. C. et al. Col-OSSOS: the two types of Kuiper belt surfaces. Planet. Sci. J. https://doi.org/10.3847/PSJ/acc844 (2022).

  45. Dodson-Robinson, S. E., Willacy, K., Bodenheimer, P., Turner, N. J. & Beichman, C. A. Ice lines, planetesimal composition and solid surface density in the solar nebula. Icarus 200, 672–693 (2009).

    Article ADS Google Scholar

  46. Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J. 144, 117 (2012).

    Article ADS Google Scholar

  47. Nesvorný, D. et al. OSSOS XX: the meaning of Kuiper belt colors. Astron. J. 160, 46 (2020).

    Article ADS Google Scholar

  48. Strazzulla, G., Cooper, J. F., Christian, E. R. & Johnson, R. E. Ion irradiation of TNOs: from the fluxes measured in space to the laboratory experiments. C. R. Phys. 4, 791–801 (2003).

    Article ADS Google Scholar

  49. Hénault, E. et al. Spectroscopic study of proton-irradiated water-methanol ice mixtures in support of TNOs’ and centaurs’ observations. In Proc. 44th COSPAR Scientific Assembly B1.2-0008-22 (2022).

  50. Grundy, W. M. et al. Surface compositions across Pluto and Charon. Science 351, aad9189 (2016).

    Article ADS Google Scholar

  51. Ahrens, C., Meraviglia, H. & Bennett, C. A geoscientific review on CO and CO2 ices in the outer Solar System. Geosciences 12, 51 (2022).

    Article ADS Google Scholar

  52. Grundy, W. M. et al. Measurement of D/H and 13C/12C ratios in methane ice on Eris and Makemake: evidence for internal activity. Icarus https://doi.org/10.1016/j.icarus.2023.115923 (2023).

  53. Birch, S. P. D. and Umurhan, O. M. Retention of CO ice and gas within 486958 Arrokoth. Icarus https://doi.org/10.1016/j.icarus.2024.116027 (2023).

  54. Brucato, J. R., Palumbo, M. E. & Strazzulla, G. Carbonic acid by ion implantation in water/carbon dioxide ice mixtures. Icarus 125, 135–144 (1997).

    Article ADS Google Scholar

  55. Mejía, C. et al. Radiolysis and sputtering of carbon dioxide ice induced by swift Ti, Ni, and Xe ions. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater Atoms 365, 477–481 (2015).

  56. Bauer, J. M. et al. Centaurs and scattered disk objects in the thermal infrared: analysis of WISE/NEOWISE observations. Astrophys. J. 773, 22 (2013).

    Article ADS Google Scholar

  57. Mommert, M. et al. TNOs are cool: a survey of the trans-Neptunian region. V. Physical characterization of 18 plutinos using Herschel-PACS observations. Astron. Astrophys. 541, A93 (2012).

    Article Google Scholar

  58. Santos-Sanz, P. et al. ‘TNOs are cool’: a survey of the trans-Neptunian region. IV. Size/albedo characterization of 15 scattered disk and detached objects observed with Herschel-PACS. Astron. Astrophys. 541, A92 (2012).

    Article Google Scholar

  59. Kiss, C. et al. A portrait of the extreme Solar System object 2012 DR30. Astron. Astrophys. 555, A3 (2013).

    Article Google Scholar

  60. Lellouch, E. et al. ‘TNOs are cool’: a survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and centaurs from combined Herschel and Spitzer observations. Astron. Astrophys. 557, A60 (2013).

    Article Google Scholar

  61. Fornasier, S. et al. TNOs are cool: a survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70–500 μm. Astron. Astrophys. 555, A15 (July 2013).

    Article Google Scholar

  62. Duffard, R. et al. ‘TNOs are cool’: a survey of the trans-Neptunian region. XI. A Herschel-PACS view of 16 centaurs. Astron. Astrophys. 564, A92 (2014).

    Article Google Scholar

  63. Vilenius, E. et al. ‘TNOs are cool’: a survey of the trans-Neptunian region. X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations. Astron. Astrophys. 564, A35 (2014).

    Article Google Scholar

  64. Vilenius, E. et al. ‘TNOs are cool’: a survey of the trans-Neptunian region. XIV. Size/albedo characterization of the Haumea family observed with Herschel and Spitzer. Astron. Astrophys. 618, A136 (2018).

    Article Google Scholar

  65. Müller, T., Lellouch, E. & Fornasier, S. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 153–181 (Elsevier, 2020); https://doi.org/10.1016/B978-0-12-816490-7.00007-2

  66. Gladman, B., Marsden, B. G. & Vanlaerhoven, C. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 43–57 (Univ. of Arizona Press, 2008).

  67. Bonett, D. G. & Wright, T. A. Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65, 23–28 (2000).

    Article Google Scholar

  68. Toplak, M., Read, S. T., Sandt, C. & Borondics, F. Quasar: easy machine learning for biospectroscopy. Cells 10, 2300 (2021).

    Article Google Scholar

  69. Rocha, W. R. M. et al. LIDA: the Leiden ice database for astrochemistry. Astron. Astrophys. 668, A63 (2022).

    Article Google Scholar

  70. Ehrenfreund, P., Boogert, A. C. A., Gerakines, P. A., Tielens, A. G. G. M. & van Dishoeck, E. F. Infrared spectroscopy of interstellar apolar ice analogs. Astron. Astrophys. 328, 649–669 (1997).

    ADS Google Scholar

  71. Van Broekhuizen, F. A., Groot, I. M. N., Fraser, H. J., van Dishoeck, E. F. & Schlemmer, S. Infrared spectroscopy of solid CO–CO2 mixtures and layers. Astron. Astrophys. 451, 723–731 (2006).

    Article ADS Google Scholar

  72. Ehrenfreund, P. et al. Laboratory studies of thermally processed H2O–CH3OH–CO2 ice mixtures and their astrophysical implications. Astron. Astrophys. 350, 240–253 (1999).

    ADS Google Scholar

  73. Baratta, G. A. & Palumbo, M. E. Infrared optical constants of CO and CO2 thin icy films. J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 15, 3076–3085 (1998).

    Article ADS Google Scholar

  74. Shkuratov, Y., Starukhina, L., Hoffmann, H. & Arnold, G. A model of spectral albedo of particulate surfaces: implications for optical properties of the Moon. Icarus 137, 235–246 (1999).

    Article ADS Google Scholar

  75. Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).

  76. Koposov, S. et al. joshspeagle/dynesty: v.2.1.1. Zenodo https://doi.org/10.5281/zenodo.7832419 (2023).

  77. Skilling, J. Nested sampling. In Proc. Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (eds Fischer, R. et al.) 395–405 (AIP, 2004); https://doi.org/10.1063/1.1835238

  78. Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006).

    Article MathSciNet Google Scholar

  79. Executable Books Community. Jupyter book. Zenodo https://doi.org/10.5281/zenodo.4539666 (2020).

  80. De Pra, M., Carvano, J., Morate, D., Licandro, J. & Pinilla-Alonso, N. CANA: An open-source Python tool to study hydration in the Solar System. DPS meeting #50, id.315.02 (American Astronomical Society, 2018).

  81. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article ADS Google Scholar

  82. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article Google Scholar

  83. McKinney, W. et al. Data structures for statistical computing in Python. Scipy. In Proc. 9th Python in Science Conference (eds Bergstra, J. et al.) 51–56 (2010).

  84. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article Google Scholar

Download references

Widespread CO2 and CO ices in the trans-Neptunian population revealed by JWST/DiSCo-TNOs (2024)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Merrill Bechtelar CPA

Last Updated:

Views: 6082

Rating: 5 / 5 (50 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Merrill Bechtelar CPA

Birthday: 1996-05-19

Address: Apt. 114 873 White Lodge, Libbyfurt, CA 93006

Phone: +5983010455207

Job: Legacy Representative

Hobby: Blacksmithing, Urban exploration, Sudoku, Slacklining, Creative writing, Community, Letterboxing

Introduction: My name is Merrill Bechtelar CPA, I am a clean, agreeable, glorious, magnificent, witty, enchanting, comfortable person who loves writing and wants to share my knowledge and understanding with you.